The xintexpr and allied packages

JEAN-FRANCOIS BURNOL
jfbu (at) free (dot) fr
Package version: 1.4m (2022/06/10); documentation date: 2022/06/11.
From source file xint.dtx. Time-stamp: <11-06-2022 at 19:36:36 CEST>.

Part I. The xintexpr package
1 oIntroduction 3
1.1 Basic usage and purpose 3 | 1.5 License and installation instructions 6
1.2 xintsession 4 | 1.6 Printing big numbers on the page 6
1.3 polexpr 5 | 1.7 The package documentation 6
1.4 bnumexpr 5
2 Syntax reference and user guide 7
2.1 The three parsers 7 arbitrary oples and nutples 37
2.2 Output customization 9 | 2.8 Tacit multiplication 38
2.3 Built-in operators and their precedences 13 | 2.9 User defined variables 39
Table of precedence levels of operators 15 | 2.10 User defined functions 42
2.4 Built-in functions 18 | 2.11 Examples of user defined functions 49
Table of functions in expressions 19 | 2.12 Links to some (old) examples within this
2.5 Generators of arithmetic progressions 35 document 53
2.6 Python slicing and indexing of one-dimen- 2.13 Oples and nutples: the 1.4 terminology 53

sional sequences 36 | 2.14 Expansion (for geeks only) 58

2.7 NumPy like nested slicing and indexing for 2.15 Known bugs/features (last updated at 1.4m) 59
3 The macros of xintexpr (ancient documentation, mostly)..................................... 61
4 The xinttrig Package 78
5 The xintlog package 82
6 Macros of the xinttools package 85
7 Additional (old) examples with xinttools or xintexpr or both................, 106

Part Il. The macro layer for expandable computations: xintcore, xint, xint-

frac, and some extras
8 Thexintbundle.......................... 125 13 Macros of the xintbinhex package 193
9 Macros of the xintkernel package........ 140 14 Macros of the xintgcd package 196
10 Macros of the xintcore package.......... 146 15 Macros of the xintseries package 198
11 Macros of the xint package 151 16 Macros of the xintcfrac package 214
12 Macros of the xintfrac package 163

Part IIl.
sourcexint.pdf)

The xintexpr and allied packages source code (not included, see

TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

xinttools

xintkernel
xintcore bnumexpr
xintbinhex xintged xint
xintfrac
xintseries xintcfrac
xintexpr
polexpr
poormanlog xintlog xinttrig
rlwrap etex
xintsession

Dependency graph for the xint bundle components: modules pointed to by arrows automatically
import the modules originating the continuous line ended by an arrow. Dashed lines indicate a
partial dependency, and to enable the corresponding functionalities of the lower module it is thus
necessary to use a suitable \usepackage (IATEX) or \input (Plain TEX.)

bnumexpr is a separate (IATEX only) package by the author which uses (by default) xintcore as
its mathematical engine.

polexpr handles definitions and algebraic operatione on one-variable polynomials, as well as root
localization to arbitrary precision. It works both with Plain TEX and with IATEX.

xinttrig and xintlog are loaded automatically by xintexpr; they should not be loaded directly via
a separate \usepackage (in IATEX).

poormanlog is a TEX and IATEX package by the author which is loaded automatically by xintlog.

xintsession is invoked on the command line as etex xintsession (or, if available, rlurap etex
xintsession). It loads xintbinhex automatically (but this is not indicated above graphically).

https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/poormanlog
https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/poormanlog
https://ctan.org/pkg/xintsession

TOC, , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Part |.
The xintexpr package

Introduction 3
Syntax reference and user guide 7
The macros of xintexpr (ancient documentation, mostly)................................. ... 61
The Xinttrig Package 78
The xintlog package 82
Macros of the xinttools package 85
Additional (old) examples with xinttools or xintexpr or both.................................. 106
Introduction
Basic usage and purpose................. 3 | .5 License and installation instructions 6
XINESESSION L ..o v i 4 | .6 Printing big numbers on the page 6
polexpr 5 | .7 The package documentation 6
bnumexpr...... ... 5

B W N =

JURGEN GILG's interest into what he called "XINT" was instrumental in keeping the author
motivated over the years. We exchanged on many topics extending beyond TgX and often reacted
similarly to private and public events. I knew he was a very kind and devoted person, who took
care of the needs of others prior to his own, although he never mentioned it. Jiirgen suffered
a sudden, unexpected, and deadly stroke in May 2022. I will miss his friendship profoundly.

1.1. Basic usage and purpose

e To use with etex, pdftex, ..., i.e. with TX engines activating the eTgX extensions:
\input xintexpr.sty

e To use with the BIX macro layer (latex, pdflatex, ...):
\usepackage{xintexpr}

Some random examples:
$\sart{13}, \cos(1l), \exp(1l3.3) = \xintfloateval{sqrt(13), cos(l), exp(13.3)}$\par
V13, cos(1), exp(13.3) = 3.605551275463989, 0.5403023058681397, 597195.6137928163
\begin{center}
\xintDigits*:=32;% this sets the precision to 32 digits for the math functions
\begin{minipage}{34\fontcharwd\font 0}
\xintfloateval{sqrt(13), cos(l), exp(13.3)}\par
\end{minipage}%

TOC, , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\end{center}

3.6055512754639892931192212674705,
0.54030230586813971740093660744298,
597195.61379281625101872789722711

$2A4{1000}=\printnumber{\xinteval {241000}}$\par% exact computations
21000 1071508607186267320948425049060001810561404811705533607443750388370351051124936122493
19837881569585812759467291755314682518714528569231404359845775746985748039345677748242309854
21074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167
660429831652624386837205668069376

% dummy variables

\[\sum_{i=1}2{50}\fracli=\xintTeXFrac{\xinteval{reduce(add(1/i, i=1..50))3}}\]

ji 1 13943237577224054960759

= i 3099044504245996706400

\[\sum_{i=13}A{50}\fracl{ir2}=\xintTeXFrac{\xinteval{reduce(add(1/i*2, i=1..50))3}}\]

ji_l__ 3121579929551692678469635660835626209661709
i=1i2 1920815367859463099600511526151929560192000

Computations are done expandably. This means that for example

\typeout{\xinteval {sqrt(13, 70)}}
will compute on the fly while writing out to the log file (\typeout is the BIgX idiom), here the
square root of 13 correctly rounded to 70 significant digits.

Indeed, xintexpr is a package to do expandable computations, either exactly with arbitrarily big
inputs (fractions, arbitrarily long decimal expansions, ...), or in the sense of floating point
numbers (logarithm, exponential, sine, cosine, ...). The math functions are implemented up to 62
digits of precision. The square root (as well of course as the four operations) achieve correct
rounding in arbitrary precision (i.e. even with more than 62 digits, and may even handle thousands
of digits but reasonable range is not beyond a few hundreds) .

The syntax to modify the precision used for floating point evaluations is

\xintDigits#*:= <Number>;

For reasons of the history of the package, one usually will want to use indeed the * (see \xintDigits), as the more

lightweight variant without it does let the four operations and the square root obey the new setting but it does not
recalibrate the xinttrig and xintlog libraries and their built-in constants.

The current precision is available as \xinttheDigits, and defaults to 16, but in this documenta-
tion I might be using simply Digits to refer to it.

The table of built-in operators and the one of built-in functions will give a quick overview of
the available syntax.

1.2. xintsession

The simplest way! to test the syntax is to work interactively on the command line (this feature is
available since April 2021, the version of xintsession used here is 1.3a):
rlwrap etex xintsession
[...welcome banner...]
Magic words: “&pause' (or “;'), "&help', “&bye',
“&exact', "&fp', “&int', “&pol'.

\jobname is xintsession
Transcript will go to log and to xintsession-210609_12h00.tex
Starting in exact mode (floating point evaluations use 16 digits)

1 | am assuming here in the displayed example a Unixen system, i.e. Mac OS or Linux, adapt to your environment.

https://ctan.org/pkg/xintsession
https://ctan.org/pkg/xintsession

TOC, , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

>>> 24100;

@_1 1267650600228229401496703205376

>>> cos(1l);

@_2 0.5403023058681397

>>> &fp=32
(/usr/local/texlive/2021/texmf-dist/tex/generic/xint/xintlog.sty)
(/usr/local/texlive/2021/texmf-dist/tex/generic/xint/xinttrig.sty)
fp mode (log and trig reloaded at Digits=32)

>>> cos(1);

@_3 0.54030230586813971740093660744298

>>> 341000;

@_4 1.3220708194808066368904552597521e477

>>> &exact

exact mode (floating point evaluations use 32 digits)

>>> 341000;

@_5 13220708194808066368904552597521443659654220327521481676649203682268285
9734670489954077831385060806196390977769687258235595095458210061891186534272525
7953674027620225198320803878014774228964841274390400117588618041128947815623094
4380615661730540866744905061781254803444055470543970388958174653682549161362208
3026856377858229022841639830788789691855640408489893760937324217184635993869551
6765018940588109060426089671438864102814350385648747165832010614366132173102768
902855220001

>>> &bye
Did I say something wrong?

Session transcript written on xintsession-210609_12h00.tex

)
No pages of output.
Transcript written on xintsession.log.

1.3. polexpr

The package polexpr enriches the \xinteval syntax (but not the one of \xintfloateval) with a poly-
nomial type with associated constructor pol([c0,cl,...]), and polynomial specific functions such
as polgcd(poll, pol2, ...).

Full usage of polynomials (and algebraic notations c_0 + c_1 x + c_2 x*2 + ... for input and
also output) goes through a dedicated \poldef parser which is based upon \xintdefvar/\xintdeffunc
and is a necessary step to then access via a dedicated macro interface operations such as identi-
fying all rational roots and isolating all real roots to arbitrary precision.

The simplest manner to experiment with polexpr is via the &pol mode of xintsession.

1.4. bnumexpr

This small package loads xintcore and provides the functionality of the integer-only \xint-
iiexpr/\xintiieval parser, but dropping support for nested structures, functions, variables,
boolean branching, etc... It includes by default support for hexadecimal input (with " prefix)
and output based upon xintbinhex. Compared to \the\numexpr it adds support for arbitrarily large
integers, powers with ** and A, factorials via ! postfix operator, floored division and associated
modulo, and comma separated multi-item expressions.

It also offers a user-level interface to add extra infix or postfix operators.

https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/bnumexpr

TOC, , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

1.5. License and installation instructions

xint is made available under the LaTeX Project Public License 1.3c and is included in the major TgX
distributions, thus there is probably no need for a custom install: just use the package manager
to update if necessary xint to the latest version available.
Else, CTAN access provides xint.tds.zip which has all source code and documentation in a TDS-
compliant archive, only waiting to be unzip -d <DIR> into some suitable hierarchical structure.
The README.md at CTAN lists some alternatives.

1.6. Printing big numbers on the page

When producing very long numbers there is the question of printing them on the page, without going
beyond the page limits. In this document, I have most of the time made use of a "~ "\printnumber''
macros, not provided by the package, and which is coded like this (with some extra decorations):

\def\allowsplits #1{\ifx #1l\relax \else #1\hskip Opt plus 1pt\relax

\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral- 0#1\relax }%

This macro triggers "~ f-expansion'' of its argument (and indeed \xinteval and friends expand
completely under such triggering), then it goes through the computation result character by char-
acter inserting TgX potential break points in-between them.

\printnumber{\xintiieval{100!43}}\newline
81285103704665697929058034741394527800954175275203119077085794747670888482337305968567201883
75050478138776220712647125923141159206411609199354037545836490698436012619000519089702481351
07234498895796609463150334493880799668742586291763030205250590988746228607583652771623341365
91629009247695685942955467213561895127511100771737329147330105403484204308951158469957099274
146970547638354741532999364798054400
00000000000000

1.7. The package documentation

With TX distributions providing a "texdoc" or similar utility,
texdoc --list xint
will offer the choice to visualize one of those files:
1. xint.pdf (this file)
2. sourcexint.pdf (commented Chmm...) source code)
3. CHANGES.html
4. README.md

Warning: I don't have the time to maintain perfectly such large documentation. It currently
combines old documentation which never really got updated and may be locally obsolete with more
recent stuff mostly written on occasion of the 1.4 release of January 2020 and the 1.4e one of May
2021, and the intervening changes might also have made some of it not completely accurate, despite
my best efforts. Bug reports and feature requests are most welcome.

The section formerly included with this documentation and documenting the changes since the 1.4
release has been removed as it was too time-consuming to maintain it here. Please refer to CHANGE)
S.html for the detailed listing:

texdoc --list xint then select CHANGES.html
On the internet:
http://mirrors.ctan.org/macros/generic/xint/CHANGES.html
A one-page condensed " “timeline'' is to be found at the start of sourcexint.pdf.

http://www.latex-project.org/lppl/lppl-1-3c.txt
https://ctan.org/pkg/xint
https://ctan.org/pkg/xint
http://mirrors.ctan.org/macros/generic/xint/CHANGES.html

Changed
at 1.4m!

2,

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Syntax reference and user guide

.1 Thethreeparsers........................ 7 arbitrary oples and nutples 37
.2 Output customization 9 | .8 Tacit multiplication...................... 38
.3 Built-in operators and their precedences .. 13 | .9 User defined variables.................... 39
Table of precedence levels of operators 15 | .10 User defined functions 42
.4 Built-in functions..............., 18 | .11 Examples of user defined functions 49
Table of functions in expressions 19 | .12 Links to some (old) examples within this
.5 Generators of arithmetic progressions 35 document.........l 53
.6 Python slicing and indexing of one-dimen- .13 Oples and nutples: the 1.4 terminology ... 53
sional sequences......................... 36 | .14 Expansion (for geeksonly) 58
.7 NumPy like nested slicing and indexing for .15 Known bugs/features (last updated at 1.4m) 59

2.1. The three parsers

xintexpr provides three numerical expression parsers corresponding to these three respective
tasks:

\xinteval: exact evaluations with fractions, decimal fixed point numbers, numbers in scientific

notation, with no size limitation,

\xintiieval: evaluations allowing only integers with no size limitation,
\xintfloateval: evaluations with floating points numbers according to the prevailing precision

(see \xintDigits+),

and two secondary ones which act like the exact evaluator then round the output to a given number
of fractional digits, or convert them to false or true according to whether they vanish or do not
vanish.

Please note the following:

e Although \xinteval manipulates arbitrarily long integers or fractions it also accepts
scientific notation on input, as well as all the mathematical functions (evaluated using
the prevailing digits precision), and (depending on customization) can thus produce also
scientific notation on output.

e So far, individual operations and the printing routine of \xinteval do not automatically
reduce fractions to their lowest terms.

The interface is:

e \xinteval{(expression)} handles integers, decimal numbers, numbers in scientific notation

and fractions. The algebraic computations are done exactly, and in particular / simply con-
structs fractions. Use // for floored division.

\xinteval{add(x/(x+1), x = 1000..1014)}\par
4648482709767835886400149017599415343/310206597612274815392155150733157360

In this example, the fraction obtained by addition is already irreducible, but this is not
always the case, as pointed above

Arbitrarily long numbers are allowed in the input. The space character (contrarily to the
situation inside \numexpr) and also the underscore character (as allowed in Python too) can
serve to separate groups of digits for better readability. But the package currently provides
no macros to let the output be formatted with such separators.

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xinteval{123_456_789_012A5}
28679718616935524442942783005582105858543331562763768832

e \xintieval[(D)]{{expression)} is the same parser as \xinteval, i.e. accepts the same inputs
and does all computations exactly in the same manner, but it then rounds its final result to
the nearest integer, or, in case there is an optional argument [D], to:

— if D>0: the nearest fixed point number with D digits after the decimal mark,
— if D=0: the nearest integer (as for \xintieval with no optional argument),
— if D<0: the rounded quotient by 10A(-D).

Prior to 1.4k the optional argument [(D)] had to be located within the braces at the start of
the expression. The legacy syntax is and will keep being allowed.

e \xintiieval{(expression)} executes computations on (big) integers only. It is (only slightly)
faster than \xinteval for the same expression.

Attention: the forward slash / does the rounded integer division to match behaviour of \num)
expr. The // operator does floored division as in \xinteval. The /: is the associated modulo
operator (we could easily let the catcode 12 % character be an alias, but using such an unusual
percent character would be a bit cumbersome in a TgX workflow, if only for matters of syntax
highlighting in TgX-aware text editors).

% add the iA5 only if i is a multiple of 7
\xintiieval{add((i/:7)?{omit}{iA5}, 1=1000..1020)}
3122939154402144

e \xintfloateval[{Q)]{(expression)} does floating point computations with a given precision P,
as specified via a prior assignment \xintDigits:=P\relax (the value P can be recovered via
\xinttheDigits).

Its optional argument [Q], if present, means to do a final float rounding to a mantissa of Q
digits (this thus makes sense only if Q<P).

A negative Q is allowed and means to round to P+Q digits only.

Prior to 1.4k the optional argument [{Q)] had to be located within the braces at the start of
the expression. The legacy syntax is and will keep being allowed.

The infix operator / will compute the correct rounding of the exact fraction. The operator //
is floored division and /: is its associated modulo (see also divmod()).

\begingroup

\xintDigits:=64\relax

\xintfloateval{sqrt(3)}

\endgroup
1.732050807568877293527446341505872366942805253810380628055806979

The four basic operations and the square root achieve correct rounding.2

On output, \xintfloateval uses \xintPFloat for each numeric leaf. This can be modified (cf.
\xintfloatexprPrintOne).

There is a core syntax:

e \xintexpr(expression)\relax,
\xintiexpr(expression)\relax,
\xintiiexpr(expression)\relax,
\xintfloatexpr{expression)\relax,
\xintboolexpr(expression)\relax.

2 when the inputs are already floating point numbers with at most P-digits mantissas.

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintboolexpr(expression)\relax does all computations like \xintexpr then converts all (non-
Changed empty) leaves? to true or false (cf. \xintboolexprPrintOne). There is no \xintbooleval.*
at 1.4m! Formerly the \xintexpr...\relax legacy syntax had to be prefixed by \xintthe in order to appear
make it to TX typesetting engine, else would raise (deliberately) an error. The \xintthe prefix
is optional since 1.4.

In an \edef these constructs expand to some braced nested data, all computations having been
completely done, which is prefixed with some \protected "“typesetter’ macros.

In an \edef, \xinteval (in contrast to \xintexpr), or \xintfloateval (in contrast to \xint-
floatexpr) expand the “typesetting macros” and the final complete expansion consists of explicit
digits and other characters such as those of scientific notation or square brackets.’

In BEX it is possible to use the core syntax \xintexpr(expression)\relax also in so-called mov-
ing arguments, because when written out to a file the final expansion outcome uses only standard
catcodes and thus will get retokenized and expand as expected if it has been written to an external
file which is then reloaded.

One needs \xinteval et al. only if one really wants the final digits (and other characters), for
example in a context where TgX expects a number or a dimension.

As alternative to \xinteval{(expression)}, an equivalent is \xintthe\xintexpr(expression)\re'2
lax. Similarly \xintthe can prefix all other core parsers. And one can also use \xinttheexpr as
shortcut for \xintthe\xintexpr.

Doing exact computations with fractions leads very quickly to very big results (and furthermore
one needs to use explicitly the reduce() function to convert the fractions into smallest terms).
Thus most probably what you want is \xintfloateval and \xintfloatexpr.

2.2. QOutput customization
2.2.1. \xintfloatexprPrintOne et al. for numerical values

The package provides only minimal facilities for formatting the output from \xinteval or \xint-

floateval or. ... And this output may well consist of comma separated values, even nested ones
with, by default, square brackets. First we explain how to influence the handling of individual
“leaves'.
Here are the default definitions to this effect:
\def\xintexprEmptyItem{[]} % (all parsers)
\def\xintexprPrintOne #l{\xintFracToSci{#1}} % \xinteval
\def\xintiexprPrintOne #1{\xintDecToString{#1}} % \xintieval
\def\xintiiexprPrintOne#1{#1} % \xintiieval

\def\xintfloatexprPrintOne [#1]#2{\xintPFloat[#1]{#2}} % \xintfloateval
\def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{True}{False}}
They can be re-defined to one's wishes. BIgX users will want to use \renewcommand for this.
TX-hackers note:
e Actually, the defaults are more done in the style
\let\xintexprPrintOne\xintFracToSci
thus sparing grabbing the argument #1. And one can do
\def\xintexprPrintOne{\xintFracToSci}

too.

e \xintexprPrintOne defaults in truth to some private variant of \xintFracToSci with exactly the same
output but able to understand only certain limited types of inputs as used internally. This private
variant is not f-expandable.

3 Currently, empty leaves are output using \xintexprEmptyltem, i.e. default to [|. This may change. # This was True and Fa
1se prior to 1.4m. > \xinteval and \xintexpr both expand completely in exactly two steps. And \xintexpr expands fully under
f-expansion (of the \romannumeral 0 or - 0 type). As per \xinteval attention that it may expand to nothing, then naturally
f-expansion propagates to tokens following up in the input stream.

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

e \xintfloatexprPrintOne defaults in fact to a private variant of \xintPFloat which assumes the optional
argument [P] is present as it will be the case always in this context. This optional argument [P] is the
optional argument [Q] of \xintfloateval (or Digis+Q if Q<0).

o The typesetter for \xintiiexpr simply prints "“as is'', but this may change in future, if some internal
format is used requiring a conversion step.

Here is a possibly not up-to-date list of macros of interest, whose documentations you might
consider reading (the first two require math mode):

e \xintTeXFromSci,

e \xintTeXFrac,
\xintDecToString,
\xintPRaw,
\xintFracToSci,
\xintFracToDecimal,
\xintPFloat,

e and \xintFloatToDecimal.
Naming scheme, as one can see, has been pretty much incoherent, apologies.

Among packages providing macros formatting numeric values, there are numprint and its macro \n
p (or \numprint without the option np), and siunitx and its \num, and possibly more packages not
known to the author.® These macros are suitable in combination with \xintFloat as in the example
below to customize the \xintfloateval output. Numerical output from \xinteval is more challenging
as individual values may naturally contain the / character for fractions which the above mentioned
packages will not know how to handle, as far as I know.

Here an example, with BIEX and \num from siunitx:

\def\xintfloatexprPrintOne [#1]#2{\num{\xintFloat[#1]{#2}}}
We used \def with delimited parameters because the optional argument will always be present at
time of use, and further the macro will be submitted to \expanded, but BlgX2e commands with optional
arguments defined via \newcommand are not compatible with being submitted to \expanded.

TgX-hackers note: \numis a \protected macro, hence it will remain intact in the \expanded phase. The argument
\xintFloat[#1]{#2} will thus expand before \num itself. In the case at hand \num is a macro which would anyhow
have triggered expansion of its argument before further processing.

With the \numprint macro from numprint, one can do this:

\protected\def\xintfloatexprPrintOne[#1]#2{\numprint{\xintPFloat[#1]{#23}}}
For the \protected see the explanations in fine print. The other difference is usage of \xintPFloat
rather than \xintFloat. This is because (inmy limited testing) \numprint with not silently remove
a zero scientific exponent but it will typeset it, for example as 1.5-10°. So we use our own \xint-
PFloat poor man “prettifier”.

The current behaviour of \xintfloateval corresponds to this set-up:

\def\xintfloatexprPrintOne [#1]#2{\xintPFloat[#1]{#2}}
and to this default configuration of \xintPFloat:

\def\xintPFloatE{e}

\def\xintPFloatZero{0}

\def\xintPFloatIntSuffix{}

\def\xintPFloatLengthOneSuffix{}

\def\xintPFloatNoSciEmax{5}

\def\xintPFloatNoSciEmin{-4}

\def\xintPFloatMinTrimmed{4}

With the custom replacement

\def\xintfloatexprPrintOne{\xintFloatToDecimal}

6 There does not seems to be yet a IATEX user level interface to the |3str-format package, part of 13experimental, which provides
an implementation of the Python format function.

10

https://ctan.org/pkg/numprint
https://ctan.org/pkg/siunitx
https://ctan.org/pkg/siunitx
https://ctan.org/pkg/numprint
https://ctan.org/pkg/l3experimental

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

the \xintfloateval output will use decimal fixed point notation, i.e. no scientific exponents, and
as many zeros as are needed (but no more, as trailing zeros will be removed from the significant
digits). Here is an example comparing outputs from the default configuration and custom ones:

\xintfloateval{exp(-32.456)/2000} (default, i.e. PFloat)\newline

\def\xintfloatexprPrintOne{\xintFloatToDecimal}%

\xintfloateval{exp(-32.456)/2000} (FloatToDecimal)\newline

\def\xintfloatexprPrintOne[#1]#2{\xintTeXFromSci{\xintFloat[#1]{#2}}}%

$\xintfloateval{exp(-32.456)/2000}$ (TeXFromSci on Float)\par % math mode required
4.013361680161317e-18 (default, i.e. PFloat)

.000000000000000004013361680161317 (FloatToDecimal)
4.013361680161317 - 10718 (TeXFromSci on Float)

Some examples showing now the effect of sensible customizations on \xinteval:

\xinteval{exp(-32.456)/2000} (default, i.e. FracToSci)\newline

\def\xintexprPrintOne{\xintFracToDecimal}%

\xinteval {exp(-32.456)/2000} (FracToDecimal)\newline

\def\xintexprPrintOne#1{\xintTeXFromSci{\xintFracToSci{#1}}}%

$\xinteval {exp(-32.456)/2000}$ (TexFromSci on FracToSci)\par % math mode required
8.026723360322633e-15/2000 (default, i.e. FracToSci)

0.000000000000008026723360322633/2000 (FracToDecimal)
8.026723360322633 - 1071° - 200071 (TexFromSci on FracToSci)

Notice that the /2000 denominator remains " "as is'' in the output, in conformity with the docu-
mented behaviour of \xintFracToSci in the first example and of \xintFracToDecimal for the second
example. This has not changed since 1.4 (the handling of the numerator part has changed at 1.4e and
again slightly at 1.4k, the zero value being now always printed as 0 and not 0 or 0.0 depending on
the input) but is to be considered unstable and undecided so far.

A slightly more costly typesetter could be for example:

\def\xintexprPrintOne#l1{\xintDecToStringREZ{\xintIrr{#1}}}

Then
e the fraction (inclusive of its power of ten part) will be reduced to lowest terms (see \xint-
Irr),

e next the trailing zeros will be moved as an exponent (positive or negative) to the numerator,

e this numerator with a power of ten part will be printed in decimal fixed point notation, with

as few zeros as are needed,

e and finally the denominator B, which has been trimmed of trailing zeros, will be printed as /B

or not at all if B=1.
With the use case above:

\def\xintexprPrintOne#l{\xintDecToStringREZ{\xintIrr{#1}}}

\xinteval{exp(-32.456)/2000}\par
0.000000000000000008026723360322633/2

This trailing /2 is somewhat of a pain, but as documented and mentioned already \xintDecToStringREZ
currently has not been educated to identify its presence and handle it. Slightly faster (see \xint-
PIrr) is

\def\xintexprPrintOne#1{\xintDecToStringREZ{\xintPIrr{#1}}}
which with the used example produces the same output.

One can also consider this for math mode:

\def\xintexprPrintOne#1{\xintTeXFromSci{\xintDecToStringREZ{\xintIrr{#13}3}}}

$\xinteval{exp(-32.456)/2000}$\par

0.000000000000000008026723360322633
2

See our hesitations about what \xintTeXFromSci should do with denominators.

o

TgX-hackers note: One can hope that in future \xintDecToString will identify denominators being products
of only two's and five's, but even then of course \xintTeXFromSci will have to decide how to handle other
denominators.

11

Unstable!

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

TgX-hackers note: The macro used as customization of \xintexprPrintOne (whose default is a private variant
of \xintFracToSci with exactly same output) must understand the internal xintfrac format A/B[N], but with
the /B and [N] parts being only optional. This is not a problem when using for this task (nested) macros of
xintfrac, as they of course accept such inputs as argument and in fact much more general ones.

In particular one can benefit from \xintRaw, or \xintRawBraced, to convert the argument into a well defined
shape (A/B[N] for the former and {N}{A}{B} for the latter) and then work from there.

The macro used by \xintfloatexprPrintOne has the guarantee that the [P] will be always present at expansion
time.

The customization should be compatible with being exposed to \expanded (which is like expansion in an \ede h)
f), either from being completely expandable or at the opposite from being \protected. BlgX2e commands defined
via \newcommand as macros with one optional parameter are not compatible with this requirement.

Attention! The interface requirements described above for the macros customizing the behaviours of \xint-
exprPrintOne and \xintfloatexprPrintOne may change at any release... as they depend on some internal struc-
tures and it is not certain backwards compatiblity will be maintained systematically in case of evolution.

2.2.2. \xintthealign for output of general oples

With \xintthealign one can get nested data use a TgX alignment in the output. Here is an example :
\xintthealign\xintexpr ndseq(l/(i+j), i = 1..10; j=1..10)\relax

r /2, 1/3, 1/4, 1/s, 1/6, 1/7, 1/8, 1/9, 1710, 1/11 1,
[1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 179, 1710, 1/11, 1/12 1,
[1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1710, 1/11, 1/12, 1/13 1,
[1/s, 1/6, 1/7, 1/8, 1/9, 1710, 1/11, 1/12, 1/13, 1/14 1,
[i/6, 1/7, 1/8, 179, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15 1,
[1/7, 1/8, 1/9, 1710, 1/11, 1/12, 1713, 1/14, 1/15, 1/16 1,
[1/8, 1/9, 1710, 1/11, 1/12, 1713, 1/14, 1/15, 1/16, 1/17 1,
[1/9, 1/10, 1711, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18 1,
[1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19 1,

[1/11, 1/12, 1/13, 1/14, 1/15, 1/1e6, 1/17, 1/18, 1/19, 1/20 1]
Attention, this \xintthealign must be a prefix to \xintexpr, or \xintfloatexpr etc..., but there
will be low-level TX errors if it is used to prefix \xinteval et al. or \xinttheexpr et al.

It is possible to customize the behaviour of \xintthealign. For example:

\protected\def\xintexpralignbegin {\halign\bgroup\tabskip2ex\hfil##&&##\hfil\cr}%
\def\xintexpralignend {\crcr\egroup}% removed \protected at 1.4c
\protected\def\xintexpralignlinesep {,\cr}% separates "lines"
\protected\def\xintexpralignleftsep {&}% at left of first item in a "line"

% (after "left bracket")
\protected\def\xintexpraligninnersep {,&}% at the left of non-first items
\protected\def\xintexpralignrightsep {&}% at right of last item in a "line"
% (before "right bracket")
\protected\def\xintexpralignleftbracket {[}%
\protected\def\xintexpralignrightbracket{]}%
The above definitions use \protected with no strong reason, as the replacement tokens are not
expanding anyhow, but the idea is that this allows to execute a computation via an \edef and later
one can change the meaning of the auxiliary macros depending on what one wants to do with the
expansion result.

TgX-hackers note: \xintexpralignend is expanded once, after the body has been submitted to exhaustive ex-
pansion (\expanded induced), and prior to the expansion of \xintexpralignbegin.

Although we will try to keep stable the way “regular arrays’ as in the above example are rendered
by default, the \xintthealign macro (and its associated customizability) is to be considered work-
in-progress and may experience breaking changes.

12

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Use for example this for outputting to a file or a terminal:’
% Better here without \protected.
% We assume here \newlinechar has the LaTeX setting.

\def\xintexpralignbegin {}%

\def\xintexpralignend {}%

\def\xintexpralignlinesep {,**]1}% separates "lines"

\def\xintexpralignleftsep { 1% at left of first item in a "line" (after brackets)
\def\xintexpraligninnersep {, }% at the left of non-first items

\def\xintexpralignrightsep { }% at right of last item in a "line" (before brackets)

\def\xintexpralignleftbracket {[}%

\def\xintexpralignrightbracket{]}%

In the BIgX example next using a pmatrix environment, \noexpand rather than \protected is used.
This environment will not break across pages, contrarily to the display produced by the default
\xintthealign configuration which uses TX's \halign.

\[

\def\xintexpralignbegin {\begin{pmatrix}}%

\def\xintexpralignend {\end{pmatrix}}%

\def\xintexpralignlinesep {\noexpand\\}% needed to counteract an internal \expanded

\def\xintexpraligninnersep {&}%
\let\xintexpralignleftbracket\empty \let\xintexpralignleftsep\empty
\let\xintexpralignrightbracket\empty \let\xintexpralignrightsep\empty
% by default amsmath matrices can have 10 columns at most

% (cf amsmath documentation for what to do to allow more)
l.c.m.=\xintthealign\xintiiexpr ndmap(lcm, 1..12; 1..10)\relax

\]
1 2 3 4 5 6 7 8 9 10
2 2 6 4 10 6 14 8 18 10
3 6 3 12 15 6 21 24 9 30
4 4 12 4 20 12 28 8 36 20
5 10 15 20 5 30 35 40 45 10
1com. = 6 6 6 12 30 6 42 24 18 30
7 14 21 28 35 42 7 56 63 70
8 8 24 8 40 24 56 8 72 40
9 18 9 36 45 18 63 72 9 90
10 10 30 20 10 30 70 40 90 10
11 22 33 44 55 66 77 88 99 110
12 12 12 12 60 12 84 24 36 60

2.3. Built-in operators and their precedences

The parser implements precedence rules based on concepts which are summarized below (only for
binary infix operators):

e an infix operator has two associated precedence levels, say L for left and R for right,

e the parser proceeds from left to right, pausing each time it has found a new number and an
operator following it,

e the parser compares the left-precedence L of the new found operator to the right-precedence R_)
last of the last delayed operation (which already has one argument and would like to know if it
can use the new found one): if L is at most equal to it, the delayed operation is now executed,
else the new-found operation is kept around to be executed first, once it will have gathered
its arguments, of which only one is known at this stage.

7 With the xetex engine this will need its -8bit option else the A2 in \xintexpralignlinesep will be printed literally instead of
being converted into a line separator in the file or terminal output.

13

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

This means for example in the case of the multiplication * and the division operators /, //, /:
that they are parsed in a left-associative way because they all share the same (left and right)
precedence level. This is the case with the analogous operators from the Python language, as well.

At 1

.4g the power operators were changed to act in a right associative way. Again, this matches

the behaviour of e.g. Python:
\xinteval{2A-344}

1/2417

851639229258349412352

The entries of Table 1 are hyperlinked to the more detailed discussion at each level. In these

entrie

oo At

s the number within parentheses indicates the right-precedence, if it differs from the left.

this highest level of precedence, one finds:

functions and variables Functions (even the logic functions ! () and ?() whose names consist of

a single non-letter character) must be used with parentheses. These parentheses may arise
from expansion after the function name is parsed (there are exceptions which are documented
at the relevant locations.)

Python-like “unpacking’ prefix operator. Sometimes one needs to use it as function *() (but
I can't find an example right now) but most of the time parentheses are unneeded.

. is decimal mark; the number scanner treats it as an inherent, optional and unique component

of a being formed number. \xintexpr 0.22+24.0\relax is interpreted as 022+240 and thus
produces 1.

Since release 1.2 an isolated decimal mark is illegal input in the xintexpr parsers (it
remains legal as argument to the macros of xintfrac).

e scientific notation.

E scientific notation. For output, see \xintPFloatE.

prefix for hexadecimal input. Only uppercase letters, and one optional . separating integer
and fractional hexadecimal parts. This functionality
‘requires to load explicitly package xintbinhex.

\xintexpr "FEDCBA9876543210\relax\newline

\xintexpr ".FEDCBA9876543210\relax\newline

\xintexpr 16A5-("F75DE.0A8B9+"8A21.F5746+16A-5)\relax
18364758544493064720
0.995555555555555555559410496613281793543137609958648681640625
0

It is possible that in future the " prefix could be dropped in favour of 0x prefix. This
would free " to be used for input of “string’-like entities.

20 The postfix operators ! and the branching conditionals ?, ??.

?

??

computes the factorial of an integer.

is used as (stuff)?{yes}{no}. It evaluates stuff and chooses the yes branch if the result
is non-zero, else it executes no. After evaluation of stuff it acts as a macro with two
mandatory arguments within braces, chooses the correct branch without evaluating the wrong
one. Once the braces are removed, the parser scans and expands the uncovered material.

is used as (stuff)??{<0}{=0}{>0}, where stuff is anything, its sign is evaluated and de-
pending on the sign the correct branch is un-braced, the two others are discarded with no
evaluation of their contents.

- As unary operator, the minus sign inherits as precedence the minimum of 12 (which is the prece-

de
it

nce for addition and subtraction) and of the (right-) precedence of the operators preceding
(if any).

14

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

co: at this top level the syntax elements whose execution
is done prior to operators preceding them:

built-in or user-defined functions,

variables,

the * unpacking operator,

and intrinsic constituents of numbers: decimal mark .,
e and E of scientific notation, hexadecimal prefix ".

Precedence | " "Operators'' at this level

20 postfix ! and branching ?, ?? operators

- minus sign as unary operator inherits the right-
precedence of the infix operator it follows, if
that precedence is higher than the one of binary
+ and -, else it inherits the latter

18 (17) A and ** are synonymous; they act in a right-
associative way (Changed at 1.4g!)

16 (14) Tacit multiplication has an elevated (left)

precedence

14 %, /, // (floored division), and /: (associated
modulo, alias 'mod')

12 +, -

10 <, >, ==, <=, >=, != (they can be chained)

8 Boolean conjunction && and its alias 'and'

6 Boolean disjunction || and its alias 'or'. Also
'xor'and .., ..[,].., and : have this precedence

4 the brackets for slicers and extractors [,]

3 the comma ,

2 the bracketers [,] construct nestable “arrays”

1 the parentheses (,), and the semi-colon ; in

iter(), rseq(), and further structures

e Binary operators have a left and a right precedence,
which for most coincide. The right precedence is indi-
cated within parentheses.

e Tacit multiplication has an elevated left precedence
level: (1+2)/(3+4)5 is computed as (1+2)/((3+4)*5) and
x/2y is interpreted as x/(2+*y) when using variables.

Table 1: Precedence levels

15

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintexpr -3-4%-54-7, (-3)-(4*=(-(52(-7))))\relax\newline
\xintexpr -3A-4%-5-7, (-((3A(-4))*(-5)))-7\relax\newline
|24-10| gives \xintexpr 2+-10\relax\space

-234371/78125, -234371/78125

-562/81, -562/81

2A-10 gives 1/1024 and is thus perfectly legal, no need for parentheses.

The + character as prefix unary operator is simply ignored during input parsing.
18
A
#% Both compute powers. They act in a right associative way.
\xintiiexpr 24344\relax
2417851639229258349412352

16 see Tacit multiplication.

14
* multiplication
/ division:
e in \xinteval: exact division in the field of rational numbers (not automatically re-
duced to lowest terms),

e in \xintfloateval: correct rounding of the exact division; the two operands are, if
necessary, float-rounded before the fraction is evaluated and rounded (to obtain the
correcty rounded A/B without prior rounding of A and B see qfloat()),

e in \xintiieval: for compatibility with the legacy behaviour of / in \numexpr, it rounds
the exact fraction with half-integers going towards the infinity of the same sign.

The division is left-associative. Example:

\xintexpr reduce(100/50/2)\relax
1

// floored division (and thus produces an integer, see divmod() for details)
/: the associated modulo (see divmod() and mod())
Left-associativity applies to the division operators:

\xintexpr 100000/:13, 100000 'mod' 13\relax, \xintexpr 100000/:13/13\relax
4, 4, 4/13

Nothing special needs to be done in contexts such as BIEX3 \ExplSyntaxOn where : is of cat-
code letter, but if : is an active character (for example in BIX with babel+french) one
needs to use input such as /\string : (or replace it with usage of the function mod()).

'mod' is same as /:.

1y { with polexpr loaded, which allows ' in variable and function names, 'mod' can

not follow a variable name. Add parentheses around the variable, or use /:.

12
+ addition

- subtraction. According to the general left-associativity rule in case of equal precedence,
it is left associative:

\xintiiexpr 100-50-2\relax
48

16

https://ctan.org/pkg/polexpr

e |

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

10 Comparison operators are (as in Python) all at the same level of precedence, use parentheses

for disambiguation.

< a<b evaluates to 1 if the strict inequality holds to 0 if not.

> a>b evaluates to 1 if the strict inequality holds to 0 if not.

== a==b evaluates to 1 if equality holds to 0 if not.

<= a<=b evaluates to 1 if left hand side is at most equal to right hand side, to 0 if not.
>= a>=b evaluates to 1 if left hand side is at least equal to right hand side, to 0 if not.
I= al!=b evaluates to 1 if they differ, to 0 if not.

Comparisons can be chained arbitrarily, e.g., x <y <= z != t is equivalent tox <y 'and')
y <= z 'and' z != t (and also to all(x<y, y<=z, z!=t)), except that if y and z involve com-
putations, they are evaluated only once. Currently there is no short-circuit here, i.e. even
if some intermediate comparison turns out false (in fact 0), all the remaining conditionals
will still be evaluated.

\xintifboolexpr{l<=2!=3<4>1}{true}{\error},

\xintifboolexpr{l<=2>=3<4>1}{\error}{false},

\xintifboolexpr{3 != 3! == 6 != 4! == 24}{true}{\error}
true, false, true

&& logical conjunction. Evaluates to 1 if both sides are non-zero, to 0 if not.

'and' same as &&. See also the all() multi-arguments function.

with polexpr loaded, which allows ' in variable and function names, 'and' can
not follow a variable name. Add parentheses around the variable, or use &&.

|| logical (inclusive) disjunction. Evaluates to 1 if one or both sides are non-zero, to 0 if
not.

'or' same as as ||. See also the any() multi-arguments function.

Attention: | with polexpr loaded, which allows ' in variable and function names, 'or' can
not follow a variable name. Add parentheses around the variable, or use ||.

'xor' logical (exclusive) disjunction.

Attention: |with polexpr loaded, which allows ' in variable and function names, 'xor' can
not follow a variable name. Add parentheses around the variable, or use the xor() function
syntax.

].. Syntax for arithmetic progressions. See subsection 2.5.

: This is a separator involved in [a:b] Python-like slicing syntax.

[

] Involved in Python-like slicing [a:b] and extracting [N] syntax. And its extension a la
NumPy [a:b,N,c:d,...,:]. Ellipsis ... is not yet implemented. The “step’ parameter as in
[a:b:step] is not yet implemented.

17

https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr

0 |

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

, The comma separates expressions (or function arguments) .8

\xintiiexpr 243,344,576\relax

8, 81, 15625
2

[

1 The bracketers construct nestable “array-like" structures. Arbitrary (heterogeneous) nest-
ing is allowed. For output related matters see \xintthealign (its usage is optional, with-
out it rendering is “one-dimensional”). Output shape of non-homogeneous arrays is to be
considered unstable at this time.

1

) The parentheses serve as mandatory part of the syntax for functions, and to disambiguate
precedences.9 They do not construct any nested structure.

; The semi-colon as involved as part of the syntax of iter(), rseq(), ndseq(), ndmap() has the
same precedence as a closing parenthesis.

\relax This is the expression terminator for \xintexpr et al. It may arise from expansion during
the parsing itself. As alternative to \xintexpr (et al.) use \xinteval (et al.) which have the
usual macro interface (with one mandatory argument).

The ; also serves as syntax terminator for \xintdefvar and \xintdeffunc. It can in this réle not
arise from expansion as the expression body up to it is fetched by a delimited macro. But this is
done in a way which does not require any specific hiding for inner semi-colons as involved in the
syntax of iter(), etc...

2.4. Built-in functions

See Table 2 whose elements are hyperlinked to the corresponding definitions.

Functions are at the same top level of priority. All functions even ?() and ! () require paren-

theses around their arguments.

Miscellaneous notes:

e since release 1.3d gcd() and 1cm() are extended to apply to fractions too, and do NOT require
the loading of xintgcd,

e The randomness related functions random(), qrand() and randrange() require that the TX engine
provides the \uniformdeviate or \pdfuniformdeviate primitive. This is currently the case for
pdftex, (uptex, luatex, and also for xetex since TgXLive 2019.

e togl() is provided for the case etoolbox package is loaded,

e bool(), togl() use delimited macros to fetch their argument and the closing parenthesis must
be explicit, it can not arise from on the spot expansion. The same holds for qint(), gfrac(Q),
gfloat(), qraw(), random() and grand().

e Also functions with dummy variables use delimited macros for some tasks. See the relevant
explanations there.

e Functions may be called with oples as arguments as long as the total length is the number of
arguments the function expects.

8 The comma is really like a binary operator, which may be called “join". It has lowest precedence of all (apart the parentheses)
because when it is encountered all postponed operations are executed in order to finalize its first operand; only a new comma
or a closing parenthesis or the end of the expression will finalize its second operand. 9 It is not apt to describle the opening
parenthesis as an operator, but the closing parenthesis is analogous to a postfix unary operator. It has lowest precedence which
means that when it is encountered all postponed operations are executed to finalize its operand. The start of this operand was
decided by the opening parenthesis.

18

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

10O atan2() first(Q) iter() num() rbit() subs()
70 atan2d() flat(Q) iterr() nuple() reduce() subsm()
G binomial) float() inv(Q) odd (O reversed() subsn()
+ 0O bool () float_dgt(Q last() pArg(Q) round() tan()
abs(Q) ceil(Q) floor() 1cm(Q) pArgd rrseq() tand ()
add(Q) cos() fracQ) len() pfactorial() | rseq() tgQ
allQ cosd() gcdQ logQ pow() sec() togl O
any) cot() ifQO logl00) powl0 Q) secd() trunc()
acos() cotd() ifintQ) max() preduce() seq() unpack ()
acosd() cotgQ ifone() minQ) qfloat() sgn() xor()
ArgQ csc() ifsgn() mod () qfracQ sin() zipQ
Argd(Q) cscdQ) ilogl10Q) mul O qintQ sinc()

asin() divmod () iquo(Q) ndmap) grand() sind()

asind(Q) even() irem() ndseq() qraw() sqr(Q)

atan() exp(Q isint() ndfillraw() random() sqrt ()

atand(Q) factorial () isone() not() randrange () sqrtr()

Table 2: Functions (click on names)

.4.1 Functions with no argument 19
.4.2 Functions with one argument. e 20
.4.3 Functions with an alphanumeric argument e 23
.4.4 Functions with one mandatory and a second but optional argument 24
.4.5 Functions with two arguments e 25
.4.6 Functions with 3 0r 4 argUmeNnts.t 28
.4.7 Functions with an arbitrary number of arguments 28
.4.8 Functions requiring dummy variables 30

2.4.1. Functions with no argument

random() returns a random float x verifying 0 <= x < 1. It obeys the prevailing precision as set
by \xintDigits: i.e. with P being the precision the random float multiplied by 10AP is an
integer, uniformly distributed in the 0..10AP-1 range.

This description implies that if x turns out to be <0.1 then its (normalized) mantissa has P- by
1 digits and a trailing zero, if x<0.01 it has P-2 digits and two trailing zeros, etc... This
is what is observed also with Python's random(), of course with 10 replaced there by radix 2.

\pdfsetrandomseed 12345

\xintDigits:=37\relax

\xintthefloatexpr random()\relax\newline

\xintthefloatexpr random()\relax\par
0.2415544817596207455547929850209500042
0.2584863529993996627285461554203021352

grand() returns a random float 0 <= x < 1 using 16 digits of precision (i.e. 10A{16}x is an in-
teger). This is provided when speed is a at premium as it is optimized for precision being
precisely 16.

% still with 37 digits as prevailing float precision

\xintthefloatexpr qrand(), random()\relax\newline

\xintDigits:=16\relax

\xintthefloatexpr qrand(), random()\relax\par
0.4883568991327765, 0.09165461826072383107532471669335645230
0.9069127435402274, 0.9106687541716861

19

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

One can use both gqrand() and random() inside the \xintexpr parser too. But inside the integer
only \xintiiexpr parser they will cause some low-level error as soon as they get involved
in any kind of computation as they use an internal format not recognized by the integer-only
parser.

See further randrange(), which generates random integers.

Currently there is no uniform() function!® but it can be created by user:

\xintdeffloatfunc uniform(a, b):= a + (b-a)=*random();
\romannumeral\xintreplicate{103}%
{%
\xintthefloatexpr uniform(123.45678, 123.45679)\relax\newline
1%
123.4567849497100
123.4567812033226
123.4567863308250
123.4567896366777
123.4567849656655
123.4567849908270
123.4567889123433
123.4567896262979
123.4567846543719
123.4567832664043

rbit() returns a random 0 or 1.

2.4.2. Functions with one argument

num(x) truncates to the nearest integer (truncation towards zero). It has the same sign as x,
except of course with -1<x<1 as then num(x) is zero.

\xinttheexpr num(3.1415420), num(le20)\relax

8764785276, 100000000000000000000 The output is an explicit integer with as many zeros are
as necessary. Even in float expressions, there will be an intermediate stage where all needed
digits are there, but then the integer is immediately reparsed as a float to the target pre-
cision, either because some operation applies to it, or from the output routine of \xint-
floatexpr if it stood there alone. Hence, inserting something like num(1e10000) is costly as
it really creates ten thousand zeros, even though later the whole thing becomes a float again.
On the other hand naturally 1e10000 without num() would be simply parsed as a floating point
number and would cause no specific overhead.

frac(x) fractional part. For all numbers x=num(x)+frac(x), and frac(x) has the same sign as x ex-
cept when x is an integer, as then frac(x) vanishes.

\xintthefloatexpr frac(-355/113), frac(-1129.218921791279)\relax
-0.1415929203539820, -0.218921791279

reduce(x) reduces a fraction to smallest terms

\xinttheexpr reduce(50!/20!/20!/10!)\relax
1415997888807961859400

Recall that this is NOT done automatically, for example when adding fractions.

10 Because | am not sure how to handle rounding issues: should the computation proceed exactly and a rounding be done only at
very end?

20

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

preduce(x) internally, fractions may have some power of ten part (for example when they got input
in scientific notation). This function ignores the decimal part when doing the reduction. See
\xintPIrr.

\xinttheexpr preduce(10e7/2), reduce(l0e7/2)\relax
5e7, 50000000

abs(x) absolute value

sgn(x) sign. See also \xintifsgnexpr.
inv(x) inverse.

floor(x) floor function.

ceil(x) ceil function.

sqr(x) square.

ilogl0(x) in \xintiiexpr the integer exponent a such that 10? < abs(x) < 102*1; returns (this may
evolve in future) -2147450880 if x vanishes (i.e. 0x7£££8000).

\xintiieval{ilogl0(1), ilogl10(-1234567), i1logl10(-123456789123456789), ilogl0(2+**31)}\par
0, 6, 17, 9

See ilogl0() for the behaviour in \xintexpr-essions.

sqrt(x) in \xintiiexpr, truncated square root; in \xintexpr or \xintfloatexpr this is the floating
point square root, and there is an optional second argument for the precision. See sqrt().

sqrtr(x) available only in \xintiiexpr, rounded square root.

factorial(x) factorial function (like the post-fix ! operator.) When used in \xintexpr or \xintfloatexpr
there is an optional second argument. See factorial().

?(x) is the truth value, 1 if non zero, 0 if zero. Must use parentheses.
!(x) is logical not, O if non zero, 1 if zero. Must use parentheses.
not(x) logical not.

even(x) is the evenness of the truncation num(x).

\xintthefloatexpr [3] seq((x,even(x)), x=-5/2..[1/3]..+5/2)\relax
-2.50, 1, -2.17, 1, -1.83, 0, -1.50, O, -1.17, O, -0.833, 1, -0.500, 1, -0.167, 1, 0.167, 1,
0.500, 1, 0.833, 1, 1.17, 0, 1.50, 0, 1.83, 0, 2.17, 1, 2.50, 1

odd(x) is the oddness of the truncation num(x).

\xintthefloatexpr [3] seq((x,odd(x)), x=-5/2..[1/3]..+5/2)\relax
-2.50, 0, -2.17, 0, -1.83, 1, -1.50, 1, -1.17, 1, -0.833, 0, -0.500, O, -0.167, O, 0.167, O,
0.500, 0, 0.833, 0, 1.17, 1, 1.50, 1, 1.83, 1, 2.17, 0, 2.50, O

isint(x) evaluates to 1 if x is an integer, to 0 if not. See ifint().

$\xinttheexpr -5/3..[1/3]..45/3\relax
\rightarrow \xinttheexpr seq(isint(x), x=-5/3..[1/3]..+5/3)\relax$
_5/3’ _4/3! _3/31 _2/37 _1/31 0! 1/31 2/31 3/314/31 5/3_)0! 07 11 01 Oy 11 01 Oy 11 010

isone(x) evaluates to 1 if x is 1, to 0 if not. See ifone().

$\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2+%%30)\relax

21

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\rightarrow
\xintthefloatexpr seq(isone(y), y=subs(((x-1)/x, x/x, (x+1)/x), x=2%%30))\relax$
0.9999999990686774, 1, 1.000000000931323 — 0, 1,0

qint(x) belongs with qfrac(), gfloat(), graw() to a special category:

1. They require the closing parenthesis of their argument to be immediately visible, it can
not arise from expansion.

2. They grab the argument and store it directly; the format must be compatible with what is
expected at macro level.

3. And in particular the argument can not be a variable, it has to be numerical.

qint() achieves the same result as num, but the argument is grabbed as a whole without expan-
sion and handed over to the \xintiNum macro. The g stands for " “quick'', and gint is thought
out for use in \xintiiexpr...\relax with integers having dozens of digits.

Testing showed that using gqint() starts getting advantageous for inputs having more (or f-
expanding to more) than circa 20 explicit digits. But for hundreds of digits the input gain
becomes a negligible proportion of (for example) the cost of a multiplication.

Leading signs and then zeroes will be handled appropriately but spaces will not be systemat-
ically stripped. They should cause no harm and will be removed as soon as the number is used
with one of the basic operators. This input mode does not accept decimal part or scientific
part.

\def\x{....many many many ... digits}\def\y{....also many many many digits...}
\xinttheiiexpr gqint(\x)=*qint(\y)+qint(\y)A2\relax\par

qfrac(x) does the same as gqint except that it accepts fractions, decimal numbers, scientific num-
bers as they are understood by the macros of package xintfrac. Thus, it is for use in \xintexpr. by
..\relax. It is not usable within an \xintiiexpr-ession, except if hidden inside functions
such as round or trunc which then produce integers acceptable to the integer-only parser. It
has nothing to do with frac (sigh...).

qfloat(x) does the same as qfrac and then converts to a float with the precision given by the setting
of \xintDigits. This can be used in \xintexpr to round a fraction as a float with the same
result as with the float() function (whereas using \xintfloatexpr A/B\relax inside \xint-
expr...\relax would first round A and B to the target precision); or it can be used inside
\xintfloatexpr...\relax as a faster alternative to wrapping the fraction in a sub-\xintexpr-
ession. For example, the next two computations done with 16 digits of precision do not give
the same result:

\xintthefloatexpr qfloat(12345678123456785001/12345678123456784999)-0.5\relax\newline
\xintthefloatexpr 12345678123456785001/12345678123456784999-0.5\relax\newline
\xintthefloatexpr 1234567812345679/1234567812345678-0.5\relax\newline
\xintthefloatexpr \xintexpr12345678123456785001/12345678123456784999\relax-0.5\newline

0.5

0.5000000000000010

0.5000000000000010

0.5

because the second is equivalent to the third, whereas the first one is equivalent to the

fourth one. Equivalently one can use qfrac to the same effect (the subtraction provoking the

rounding of its two arguments before further processing.)

Note that if the input needs no special rounding, the internal form of the output keeps a short
mantissa (it does not add padding zeros to make it of length equal to the float precision). For
example qfloat(2[20]) would keep internally the input format.

22

Do not
use! (1.4)

unstable?

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

float dgt(x) is like float() and avoids float()'s check whether it used with its second optional

argument. This is useful in the context of converting function definitions done via \xint-
deffunc (see explanations there) to functions usable in \xintfloateval.

nuple(x) is currently same as [...]. Reserved for possible alternative meaning in future.

\xinteval{nuple(1,2,3)}
[1! 2 ’ 3]

unpack(x) is alternative for * unpacking operator.

\xinteval{unpack([1,2,3])}
1, 2, 3

flat(ople) removes all nesting to produce a (non-bracketed) ople having the same leaves (some pos-

sibly empty) but located at depth 1.

\xinteval{flat([[[[1,[],3],[4,[[[5,6,[11,[8,91,[[],111],12],[13,14]11], [[1,16111, [1D}
1! []! 3’ 4’ 5! 6’ [:]! 8’ 9’ []! 11’ 12’ 13’ 14! []!]‘67 []

I almost delayed indefinitely release because I was hesitating on the name: perhaps better
with flattened(), but long names add (negligible, but still) overhead compared to short names.
For this reason, consider that name may change.

2.4.3. Functions with an alphanumeric argument

bool(name) returns 1 if the TgX conditional \ifname would act as \iftrue and 0 otherwise. This

works with conditionals defined by \newif (in TX or BIX) or with primitive conditionals such
as \ifmmode. For example:

\xintifboolexpr{25+4-if(bool (mmode),100,75)}{YES}{NO}
will return NO if executed in math mode (the computation is then 100-100 = 0) and YES if not (the
if() conditional is described below; the \xintifboolexpr test automatically encapsulates its
first argument in an \xintexpr and follows the first branch if the result is non-zero (see
subsection 3.14)).

The alternative syntax 25%4-\ifmmodel100\else75\fi could have been used here, the usefulness
of bool(name) lies in the availability in the \xintexpr syntax of the logic operators of con-
junction &&, inclusive disjunction ||, negation ! (or not), of the multi-operands functions
all, any, xor, of the two branching operators if and ifsgn (see also ? and ??), which allow
arbitrarily complicated combinations of various bool (name).

togl(name) returns 1 if the KX package etoolbox!! has been used to define a toggle named name,

and this toggle is currently set to true. Using togl in an \xintexpr..\relax without having
loaded etoolbox will result in an error from \iftoggle being a non-defined macro. If etoolbox
is loaded but togl is used on a name not recognized by etoolbox the error message will be of the
type ' "ERROR: Missing \endcsname inserted.'', with further information saying that \protect
should have not been encountered (this \protect comes from the expansion of the non-expandable
etoolbox error message).

When bool or togl is encountered by the \xintexpr parser, the argument enclosed in a parenthe-
sis pair is expanded as usual from left to right, token by token, until the closing parenthesis
is found, but everything is taken literally, no computations are performed. For example tog
1(2+3) will test the value of a toggle declared to etoolbox with name 2+3, and not 5. Spaces
are gobbled in this process. It is impossible to use togl on such names containing spaces, but
\iftoggle{name with spaces}{1}{0} will work, naturally, as its expansion will pre-empt the
\xintexpr scanner.

1 https://ctan.org/pkg/etoolbox

23

https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/etoolbox

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

There isn't in \xintexpr... a test function available analogous to the test{\ifsometest} con-
struct from the etoolbox package; but any expandable \ifsometest can be inserted directly in
an \xintexpr-ession as \ifsometest1l0 (or \ifsometest{1}{0}), for example if(\ifsometest{1}{)
0},YES,NO) (see the if operator below) works.

A straight \ifsometest{YES}{NO} would do the same more efficiently, the point of \ifsometest
10 is to allow arbitrary boolean combinations using the (described later) && and || logic op-
erators: \ifsometestl0 && \ifsomeothertestl0 || \ifsomethirdtest10, etc... YES or NO above
stand for material compatible with the \xintexpr parser syntax.

See also \xintifboolexpr, in this context.

2.4.4. Functions with one mandatory and a second but optional argument

round(x[, n]) Rounds its first argument to an integer multiple of 10A(-n) (i.e. it quantizes). The
case of negative n is new with 1.4a. Positive n corresponds to conversion to a fixed point
number with n digits after decimal mark.

\xinteval{round(-2430/3425,12), round(-22A30/3A5,-3)}
-4418690.633744855967, -4419e3

trunc(x[, n]) Truncates its first argument to an integer multiple of 10A(-n). The case of negative
n is new with 1.4a.

\xinteval{trunc(-2430/325,12), trunc(-2230/3A5,-3)}
-4418690.633744855967, -4418e3

float(x[, n]) Rounds its first argument to a floating point number, with a precision given by the
second argument, which must be positive.

\xinteval{float(-2430/345,12), float(-2230/3A5, 1)}
-4.41869063374e6, -4e6

For this example and earlier ones if the parser had been \xintfloateval, not \xinteval, the
first argument (here 2430/345) would already have been computed as floating point number with
numerator and denominator rounded separately first to the prevailing precision. To avoid
that, use \xintexpr...\relax wrapper. Then the rounding or truncation will be applied to an
exact fraction.

sfloat(x[, n]) It is the same as float(), but in case of a short (non-fractional) input it gets stored
internally without adding zeros to make the mantissa have the \xinttheDigits length. One may
wonder then what is the utility of sfloat()? See for an example of use the documentation of
\xintdeffunc. Notice however that this is a bit experimental and may evolve in future when
xint gets a proper internal data structure for floating point numbers. The non-normalized
format is useful for multiplication or division, but float additions and subtractions usually
convert their arguments to a normalized mantissa.

ilogl0(x[, n]) If there is an optional argument n, returns the (relative) integer a such that 102 <
abs(float(x, n)) < 102!, In absence of the optional argument:

e in \xintexpr, it returns the exponent a such that 102 < abs(x) < 102+,
e in \xintfloatexpr, the input is first rounded to \xinttheDigits float precision, then the
exponent a is evaluated.

\xintfloateval{ilog10(99999999/10000000, 8), ilogl0(-999999995/100000000, &),
110910(-999999995/100000000, 9)}\newline
\xinteval{ilog10(-999999995/100000000), ilogl0(-999999995/100000000, 8)}

24

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

0,1,0
0,1

If the input vanishes the function outputs -2147450880 (i.e. -0x7fff8000 which is near the
minimal TeX number -0x7fffffff). This is also subject to change.

The integer-only variant for \xintiiexpr admits no optional argument.

sqrt(x[, n]) in \xintexpr...\relax and \xintfloatexpr...\relax it achieves the precision given by
the optional second argument. For legacy reasons the sqrt function in \xintiiexpr truncates
(to an integer), whereas sqrt in \xintfloatexpr...\relax (and in \xintexpr...\relax which
borrows it) rounds (in the sense of floating numbers). There is sqrtr in \xintiiexpr for round-
ing to nearest integer.

\xinttheexpr sqrt(2,31)\relax\ and \xinttheiiexpr sqrt(num(2e60))\relax
1.41421356237309504880168872421 and 1414213562373095048801688724209

There is an integer only variant for \xintiiexpr.

factorial(x[, n]) when the second optional argument is made use of inside \xintexpr...\relax, this
switches to the use of the float version, rather than the exact one.

\xinttheexpr factorial (100,32)\relax, {\xintDigits:=32\relax \xintthefloatexpr
factorial (100)\relax}\newline
\xinttheexpr factorial (50)\relax\newline
\xinttheexpr factorial (50, 32)\relax
9.3326215443944152681699238856267e157, 9.3326215443944152681699238856267e157
30414093201713378043612608166064768844377641568960512000000000000
3.0414093201713378043612608166065e64

The integer only variant of course has no optional second argument.

randrange(A[, B]) when used with a single argument A returns a random integer 0 <= x < A, and when
used with two arguments A and B returns a random integer A <= x < B. As in Python it is an
“empty range” error in first case if A is zero or negative and in second case if B <= A.

Attention that the arguments are first converted to integers using \xintNum (i.e. truncated
towards zero).

The function can be used in all three parsers. Of course the size is not limited (but in the
float parser, the integer will be rounded if involved in any operation).

\pdfsetrandomseed 12345

\xinttheiiexpr randrange(10=*20)\relax\newline

\xinttheiiexpr randrange(1234=%10%**16, 1235*10**16)\relax\newline

\printnumber{\xinttheiiexpr randrange(10%%199,10%%200)\relax}\par
12545314555479298502
12341249468233524155
3872427149656655225094489636677708166243633082496887337312033225820004454949709978664331
9106687541716861906912743540227448009165461826072383107532471669335645234883568991327765
395258486352999399662728

For the support macros see \xintRandomDigits, \xintiiRandRange, \xintiiRandRangeAtoB. For
some details regarding how xint uses the engine provided generator of pseudo-random numbers,
see \xintUniformDeviate.

2.4.5. Functions with two arguments

iquo(m, n) Only available in \xintiiexpr/\xintiieval context. Computes the Euclidean quotient.
Matches with the remainder defined in next item. See \xintiiQuo.

25

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

irem(m, n) Only available in \xintiiexpr/\xintiieval context. Computes the Euclidean remainder.
Attention that, following mathematical definition, it is always non-negative. See \xint-
iiRem.

mod(f, g) computes f - g=floor(f/g). Hence its output is a general fraction or floating point
number or integer depending on the used parser. If non-zero, it has the same sign as g.

Prior to 1.2p it computed f - g=trunc(f/g).

The /: and 'mod' infix operators are both mapped to the same underlying macro as this mod(fé
, g9) function. At 1.3 this macro produces smaller denominators when handling fractions than
formerly.

\xinttheexpr mod(11/7,1/13), reduce(((11/7)//(1/13))+*1/13+mod(11/7,1/13)),
mod(11/7,1/13)- (11/7)/:(1/13), (11/7)//(1/13)\relax\newline
\xintthefloatexpr mod(11/7,1/13)\relax\par

3/91, 11/7, 0, 20

0.03296703296703260

Attention: the precedence rules mean that 29/5 /: 3/5 is handled like ((29/5)/:3)/5. This is
coherent with behaviour of Python language for example:

>>> 29/5 % 3/5, 11/3 % 17/19, 11/57

(0.5599999999999999, 0.19298245614035087, 0.19298245614035087)
>>> (29/5) % (3/5), (11/3) % (17/19), 5/57

(0.4, 0.08771929824561386, 0.08771929824561403)

For comparison (observe on the last lines how \xintfloatexpr is more accurate than Python!):

\noindent\xinttheexpr 29/5 /: 3/5, 11/3 /: 17/19\relax\newline

\xinttheexpr (29/5) /: (3/5), (11/3) /: (17/19)\relax\newline
\xintthefloatexpr 29/5 /: 3/5, 11/3 /: 17/19, 11/57\relax\newline
\xintthefloatexpr (29/5) /: (3/5), (11/3) /: (17/19), 5/57\relax\newline
5/57 = \xinttheexpr trunc(5/57, 20)\relax\dots\newline

14/25, 11/57

2/5, 5/57

0.56, 0.1929824561403509, 0.1929824561403509

0.4, 0.08771929824561420, 0.08771929824561404

5/57 = 0.08771929824561403508. .

Regarding some details of behaviour in \xintfloatexpr, see discussion of divmod function

next.

divmod(f, g) computes the two mathematical values floor(f/g) and mod(f,g)=f - g=floor(£f/g) and
produces them as a bracketed pair in other terms it is analogous to the Python divmod function.
Its output is equivalent to using f//g, f/:g but its implementation avoids doing twice the
needed division.

In \xintfloatexpr...\relax the modulo is rounded to the prevailing precision. The quotient is
like in the other parsers an exact integer. It will be rounded as soon as it is used in further
operations, or via the global output routine of \xintfloatexpr. Those examples behave as in
1.3f because assignments to multiple variables tacitly unpack if this is necessary.

\xintdefvar Q, R := divmod(3.7, 1.2);%

\xinttheexpr Q, R, 1.2Q + R\relax\newline
\xintdefiivar Q, R := divmod(100, 17);%
\xinttheiiexpr Q, R, 17Q + R\relax\newline
\xintdeffloatvar Q, R := divmod(100, 17e-20);%
\xintthefloatexpr Q, R, 17e-20 * Q + R\relax\newline

26

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

% show Q exactly, although defined as float it can be used in iiexpr:
\xinttheiiexpr Q\relax\ (we see it has more than 16 digits)\par
\xintunassignvar{Q}\xintunassignvar{R}%

3, 0.1, 3.7

5, 15, 100

5.882352941176471e20, 9e-20, 100

5882352941176471[5] (we see it has more than 16 digits)

Again: f//g or the first item output by divmod(f, g) is an integer g which when computed inside
\xintfloatexpr..\relax is not yet rounded to the prevailing float precision; the second item
f-q*g is the rounding to float precision of the exact mathematical value evaluated with this
exact q. This behaviour may change in future major release; perhaps q will be rounded and f-q*g
will correspond to usage of this rounded q.

As \xintfloatexpr rounds its global result, or rounds operands at each arithmetic operation,
it requires special circumstances to show that the q is produced unrounded. Either as in the
above example or this one with comparison operators:

\xintDigits := 4\relax
\xintthefloatexpr if(12345678//23==537000, 1, 0), 12345678//23\relax\newline
\xintthefloatexpr if(float(12345678//23)==537000, 1, O)\relax\par
\xintDigits := 16\relax

0, 537000

1

In the first line, the comparison is done with floor(12350000/23)=536957 (notice in passing
that 12345678//23 was evaluated as 12350000//23 because the operands are first rounded to 4
digits of floating point precision), hence the conditional takes the "False" branch. In the
second line the float forces rounding of the output to 4 digits, and the conditional takes the
"True" branch.

This example shows also that comparison operators in \xintfloatexpr..\relax act on unrounded
operands.

binomial(x, y) computes binomial coefficients. It returns zero if y<0 or x<y and raises an error
if x<0 (or if x>99999999.)

\xinttheexpr seq(binomial (20, i), i=0..20)\relax
1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756, 167960, 125970, 77520,
38760, 15504, 4845, 1140, 190, 20, 1

\printnumber{\xintthefloatexpr seq(binomial (100, 50+i), i=-5..+5)\relax}%
6.144847121413618e28, 7.347099819081500e28, 8.441348728306404e28, 9.320655887504988e28, 9
.891308288780803e28, 1.008913445455642e29, 9.891308288780803e28, 9.320655887504988e28, 8.
441348728306404e28, 7.347099819081500e28, 6.144847121413618e28

The arguments must be (expand to) short integers.

pfactorial(a, b) computes partial factorials i.e. pfactorial(a,b) evaluates the product (a+l1)...)
b.

\xinttheexpr seq(pfactorial(20, i), i=20..30)\relax
1, 21, 462, 10626, 255024, 6375600, 165765600, 4475671200, 125318793600, 3634245014400,
109027350432000

The arguments must (expand to) short integers. See subsection 11.36 for the behaviour if the
arguments are negative.

ndfillraw(TgX-macro, n-uple) The second argument is [N1, N2, ..., Nk]. The construct fills an Nix)
N2x...xNk hyperrectangular nested list by evaluating the given macro as many times as needed.

27

Do not
use!

Do not
use!

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

The expansion result goes directly into internal data and must thus comply with what is ex-
pected internally for an individual numeric leaf (at 1.4, xintfrac raw format worked for
\xintexpr or \xintfloatexpr, but not \xintiiexpr, and this may have changed since). This is
an experimental function serving to generate either constant or random arrays. Attention that
TeX-macro stands here for any expandable TgX macro, and an \xintexpr-ession at this location
thus requires an explicit \xinteval wrapping.

2.4.6. Functions with 3 or 4 arguments

if(cond,yes,no) (twofold-way conditional)
checks if cond is true or false and takes the corresponding branch. Any non zero number or
fraction is logical true. The zero value is logical false. Both "~ “branches'' are evaluated
(they are not really branches but just numbers). See also the ? operator.

ifint(x,yes,no) (twofold-way conditional)
checks if x is an integer and in that case chooses the "~ “yes'' branch.

See also isint().

ifone(x,yes,no) (twofold-way conditional)
checks if x is equal to one and in that case chooses the "~ “yes'' branch.

Slightly more efficient than if(x==1,..,..). See also isone().

ifsgn(cond,<0,=0,>0) (threefold-way conditional)

checks the sign of cond and proceeds correspondingly. All three are evaluated. See also the
7?7 operator.

2.4.7. Functions with an arbitrary number of arguments

The functions all(), any(Q, xor(Q, + O, = O, max(Q, min(, gcd, lcmQ, first(), last(Q,
reversed() and len() work both with “open”’ and “packed’ lists (aka nutples).

Since 1.4, when used with a single argument which is a nutple, it is automatically unpacked. But
from 1.4 to 1.4h these functions could not be used with a single numeric argument: either they had
at least two arguments, or only one and it had to be a nutple. At 1.4i it is again possible to use
them with a lone numeric argument.

In the specific case of reversed() with a nutple argument the output is then repacked so that
the output is a nutple if and only if the input was one (the reversal does not propagate to deeper
nested nutple's, it applies only at depth one).

qraw(stuff) It injects directly tokens to represent internally numerical data. Will break at any
release modifying the internal data format specifications (which are not always documented).

aII(x, Y,) inserts a logical AND in-between its arguments and evaluates the resulting logical
assertion (as with all functions, all arguments are evaluated).

\xinteval{all(1,1,1), all([1,0,1]), all([1,1,1])}
1,0, 1

any(x, y, ...) inserts a logical OR in-between its arguments and evaluates the resulting logical
assertion,

\xinteval{any(0,0,0), any([1,0,1]), any([0,0,0])}
0,1, 0

xor(x, y, ...) inserts a logical XOR in-between its arguments and evaluates the resulting logical
assertion,

28

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xinteval{xor(1,1,1), xor([1,0,1]), xor([1,1,1]1)}
1, 0,1

47 (x, ¥, ...) adds (left ticks mandatory):

\xinttheexpr "+ (1,3,19), "+ (1#*%2,3*%2,sqr(19)), "+ ([1%*2,3*%2,sqr(19)])\relax
23, 371, 371

“#7(x, y, ...) multiplies (left ticks mandatory):

\xinttheexpr "= (1,3,19), "= (142,342,1942), "= ([142,342,1942])\relax
57, 3249, 3249

max(x, y, ...) maximum of the (arbitrarily many) arguments,

\xinttheexpr max(1,3,19), min([1,3,19])\relax
19, 1

min(x, y, ...) minimum of the (arbitrarily many) arguments,

\xinttheexpr min(1,3,19), min([1,3,19])\relax
1, 1

gcd(x, Y,) computes the positive generator of the fractional ideal of rational numbers xZ+yZ +
. C Q. Since 1.4d the output is always in lowest terms.

This example shows how to reduce an n-uple to its primitive part:

\xinteval{gcd(7/300, 11/150, 13/60)}\newline
$(7/300, 11/150, 13/60)\to
(\xinteval {subsn(seq(reduce(x/D), x = L), D=gcd(L); L=7/300, 11/150, 13/60)})$\newline
\xintexpr gcd([7/300, 11/150, 13/60])\relax\par
1/300
(7/300, 11/150, 13/60) — (7, 22, 65)
1/300
MEMO Perhaps a future release will provide a primpart() function as built-in functionality.

In case of strict integers, using a \xintiiexpr...\relax wrapper is advantageous as the
integer-only gcd() is more efficient. As \xintiiexpr accepts only strict integers, doing this
may require wrapping the argument in num(Q).

|cm(x, Y,) computes the positive generator of the fractional ideal of rational numbers xZNyZN

. CQ.

\xinttheexpr lcm([7/300, 11/150, 13/60])\relax
1001/30 As for gcd(), since 1.4d the output is always in lowest terms. For strict integers it
is slightly advantageous to use a sub \xintiiexpr-ession.

first(x, y, ...) first item of the list or nutple argument:

\xintiiexpr first([last(-7..3), [58, 97..105]]1)\relax
3

last(x, y, ...) last item of the list or nutple argument:

\xintiiexpr last([-7..3, 58, first(97..105)])\relax
97

reversed(x, y, ...) reverses the order of the comma separated list or inside a nutple:

29

unstable?

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintiieval{reversed(reversed(l..5), reversed([1..5]))}
[5, 4,3,2,1]1,1, 2,3,4,5

The above is correct as xintexpr functions may produce oples and this is the case here.

len(x, y, ...) computes the number of items in a comma separated list or inside a nutple (at first
level only: it is not a counter of leaves).

\xinttheiiexpr len(37.5), len(l..50, [101..150], 1001..1050), len([1l..10])\relax
1, 101, 10

zip(*nutples) behaves similarly to the Python function of the same name: i.e. it produces an ople
of nutples, where the i-th nutple contains the i-th element from each of the argument nutples.
The ople ends when the shortest input nutple is exhausted. With a single nutple argument, it
returns an ople of 1-nutples. With no arguments, it returns the empty ople.

As there is no exact match in xintexpr of the concept of “iterator” object,!? there is a signif-
icant difference here that (for example) the zip(x,x,x) Python idiom to cluster the iterator
X into successive chunks of length 3 does not apply. Consider for this reason even the name of
the function as work-in-progress, susceptible to change.

\xintiieval{zip([1..9], [0, 1, 2], [11..29], [111..139])}
[1, o, 11, 1113, [2, 1, 12, 112], [3, 2, 13, 113]

See also \xintthespaceseparated for some possible usage in combination with flat().

2.4.8. Functions requiring dummy variables

The pseudo-functions subs(), seq(), subsm(), subsn(), iter(), add(), mul(), rseq(), iterrQ),
rrseq(), iterr(), ndseq(), ndmap(), ndfillraw() use delimited macros for some tasks:

e for all of them, whenever a <varname>= chunk must be parsed into a (non-assigned) variable
name, then the equal sign must be visible,

e and if the syntax is with ,<varname>= the initial comma also must be visible (spaces do not
matter),

e for all of them but ndmap() and ndfillraw() the final closing parenthesis must be visible.

Although delimited macros involving commas are used to locate ,<varname= this is done in a way
silently ignoring commas located inside correctly balanced parentheses. Thus, as the examples
will show, nesting works as expected.

The semi-colons involved in the syntax may arise from expansion alone. For rseq(), iter(),
rrseq() and iterr() the ,<varname>= part may also be created from the expansion which will gener-
ate the initial comma separated values delimited by a semi-colon.

Prior to 1.4, semi-colons needed to be braced or otherwise hidden when located in an expression
parsed by \xintdefvar or \xintdeffunc, to not be confused with the expression terminator.

seq(), rseq(), iter(), rrseq(), iterr() and also add(), mul(), but not subs() admit the omit,
abort, and break() keywords. This is a new feature at 1.4 for add() and mul().

In the case of a potentially infinite list generated by the <integer>++ syntax, use of abort or
of break() is mandatory, naturally.

All lowercase and uppercase Latin letters are pre-configured for usage as dummy variables. In
Unicode engines one can use \xintnewdummy to turn any letter into a usable dummy variable.

And since 1.4, \xintnewdummy works (in all engines) to turn a multi-letter word into a dummy
variable. In the descriptions, varname stands for such a dummy variable, either single-letter or
word.

12 Speaking of iterators, | have some ideas about this: as \xintexpr does not have the global expression in its hands it is difficult
to organize globally expandably the idea of iterator, but locally via syntax like the one for seq() this is feasible. When one thinks
about it, seq() is closely related to the iterator idea.

30

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

subs(expr, varname=values) for variable substitution.

\xinttheexpr subs(subs(seq(x*z,x=1..10),z=yA2),y=10)\relax\newline
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
Attention that xz generates an error, one must use explicitely x*z, else the parser expects a
variable with name xz.

subs() is useful when defining macros for which some argument will be used more than once but
may itself be a complicated expression or macro, and should be evaluated only once, for matters
of efficiency. But subs() is helpless in function definitions: all places where a variable is
substituted will receive the complete recipe to compute the variable, rather than evaluate
only once.

One should rather define auxiliary functions to compute intermediate results. Or one can use
seq() . See the documentation of \xintdeffunc.

add(expr, varname=values) addition

\xintiiexpr add(x”3,x=1..20), add(x(x+1), x=1,3,19)\relax\newline

\xintiiexpr add(x*3, x = 1..[2]..20)\relax\newline % add only odd cubes
\xintiiexpr add((odd(x))?{xA3}{omit}, x = 1..20)\relax\par % add only odd cubes
44100, 394
19900
19900

At 1.4 (fixed at 1.4a), the keywords omit (as in example above), abort and break() are allowed.
The meaning of break() is specific: its argument serves as last operand for the addition, not
as ultimate value.

\xintiiexpr add((x>10)?{break(1000)}{x}, x = 1..15)\relax
1055

The @ special variable holds the so-far accumulated value. Initially its value is zero.

\xintiiexpr add(l + @, i=1..10)\relax % iterates x <- 2x+1
1023

See "+ () for syntax simply adding items of a list without usage of a dummy variable.
mul(expr, varname=values) multiplication

\xintiiexpr mul (x42, x = 1, 3, 19, 37..50)\relax
21718466538487411085212279802172111087206400000000
The @ special variable holds the so-far accumulated value. Initially its value is one.

At 1.4 (fixed at 1.4a), the keywords omit, abort and break() are allowed. The meaning of
break() is specific: its argument serves as last operand for the multiplication, not as ulti-
mate value.

\xintiieval{mul ((i==100)7{break(i*4)}{i}, i = 98, 99, 100)}
970200000000

See "= () for syntax without a dummy variable.
seq(expr, varname=values) comma separated values generated according to a formula

\xintiiexpr seq(x(x+1) (x+2) (x+3),x=1..10), “=* (seq(3x+2,x=1..10))\relax
24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160, 1162274713600

\smallskip
\leavevmode\vbox{\xintthealign\xintiiexpr [seq([seq(i*2+j*2, i=0..3j)], j=0..10)]\relax}

31

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

(C o 1,
1, 2 1,
4, 5, 8 1,
9, 10, 13, 18 1,

16, 17, 20, 25, 32 1,

26, 29, 34, 41, 50 1,

36, 37, 40, 45, 52, 61, 72 1,

49, 50, 53, 58, 65, 74, 85, 98 1,

64, 65, 68, 73, 80, 89, 100, 113, 128 1],

81, 82, 85, 90, 97, 106, 117, 130, 145, 162 1],

100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200 1]]

L T s T s T s N e Y s T s Y s Y s T s W |
N
(%)

rseq(initial value; expr, varname=values) recursive sequence, @ for the previous value.

\printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/2@, i=1..10),y=1000)\relax }\newline
1, 500.5, 251.2490009990010, 127.6145581634591, 67.72532736082604, 41.24542607499115, 32.7)
4526934448864, 31.64201586865079, 31.62278245070105, 31.62277660168434, 31.62277660168379
= { Attention: in the example above y/2@ is interpreted as y/(2*@). With versions 1.2c or earlier
it would have been interpreted as (y/2)+@.

In case the initial stretch is a comma separated list, @ refers at the first iteration to the
whole list. Use parentheses at each iteration to maintain this "~ "nuple''. For example:

\printnumber{\xintthefloatexpr rseq(l,1046;
(sqgrt(@[0]*@[1]),C@[0]+@[1])/2), i=1..7)\relax }
1, le6, 1000, 500000.5, 22360.69095533499, 250500.25, 74842.22521066670, 136430.4704776675,
101048.3052657827, 105636.3478441671, 103316.8617608946, 103342.3265549749, 103329.593373
4841, 103329.5941579348, 103329.5937657094, 103329.5937657095

Prior to 1.4 the above example had to be written with [@]. This is still possible (@ stands
for an ople with two items, bracketing then extracting is like extracting directly), but it
is leaner to drop the extra “packing”.

iter(initial value; expr, varname=values) is exactly like rseq, except that it only prints the last
iteration.

iter() is convenient to handle compactly higher order iterations. We can illustrate its use
with an expandable (!) implementation of the Brent-Salamin algorithm for the computation of
n:

\xintDigits:= 87\relax % we target 84 digits, and use 3 guard digits
\xintdeffloatfunc BS(a, b, t, p):= 0.5%(Ca+b), sqrt(axb), t-p=sqr(a-b),
\xintiiexpr 2p\relax;
\xinteval
{trunc(% I feel truncation is better than rounding to display decimals of =&
\xintfloatexpr
iter(1l, sqrt(0.5), 1, 1; % initial values
% this 43 is 84/2 + 1
(@[0]-@[1]<2e-43)?% stopping criteria; takes into account that the
% exit computation (break() argument) doubles
% number of exact digits (roughly)
{break(sqr(@[0]+@[1])/@[2])} % ... do final computation,
{BS(@)}, % else do iteration
i=1++) % This generates infinite iteration. The i is not used.
\relax
% this 83 is 84 - 1 (there is a digit known to be 3 actually, before decimal mark)
, 83)% closing parenthesis of trunc()

32

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

}...% some dots following end of \xinteval argument

\xintDigits:=16\relax
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862. ..
You can try with \xintDigits:=1004\relax and 2e-501 in place of \xintDigits:=87\relax and Ze,)
-43, but be patient for some seconds for the result. Of course don't truncate the final result
to only 83 fractional decimal digits but 1000... and better to wrap the whole thing in \message
or \immediate\writel28 or \edef because it will then run in the right margin.

Prior to 1.4 the above example had to use notation such as [@][0]; this would still work but
@[0] is leaner.

rrseq(initial values; expr, varname=values) recursive sequence with multiple initial terms. Say,
there are K of them. Then @1, ..., @4 and then @@(n) up to n=K refer to the last K values.
Notice the difference with rseq() for which @ refers to a list of items in case the initial
value is a list and not a single item.!? Using rrseq() with @1 etc... accessors may be perhaps
a bit more efficient than using rseq() with a list as staring value and constructs such as @[Q
0], @[1] (or rather @[-1], @[-2] to mimick what @1, @2, @3, @4 and @@(integer) do in rrseq().

\xinttheiiexpr rrseq(0,1; @1+@2, i=2..30)\relax
0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

\xinttheiiexpr rseq(l; 2@, i=1..10)\relax
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

\xinttheiiexpr rseq(l; 2@+1, i=1..10)\relax
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047

\xinttheiiexpr rseq(2; @(@+1)/2, i=1..5)\relax
2, 3,6, 21, 231, 26796

\xinttheiiexpr rrseq(0,1,2,3,4,5; @1+@2+@3+@4+@@(5)+@@(6), i=1..20)\relax
0,1, 2,3, 4,5, 15, 30, 59, 116, 229, 454, 903, 1791, 3552, 7045, 13974, 27719, 54984, 109065,
216339, 429126, 851207, 1688440, 3349161, 6643338
I implemented an Rseq which at all times keeps the memory of all previous items, but decided
to drop it as the package was becoming big.

iterr(initial values; expr, varname=values) same as rrseq but does not print any value until the last

K.
\xinttheiiexpr iterr(0,1; @l+@2, i=2..5, 6..10)\relax
% the iterated over list is allowed to have disjoint defining parts.
55
subsm(expr, varl=valuel; var2=value2;; varN=valueN[;]) Simultaneous substitutions. The as-

signed values must not involve the variables. An optional final semi-colon is allowed.

\xintiieval {subsm(x+2y+3z+4t, x=1; y=10; z=100; t=1000;)}
4321

subsn(expr, varl=valuel; var2=value2;; varN=valueN[;]) Simultaneous substitutions. The as-
signed values may involve all variables located further to its right. An optional final semi-
colon is allowed.

\xintiieval{subsn(x+y+z+t, x=20y; y=20z; z=20t; t=1)}

13 Prior to 1.4, one could use @ in rrseq() and iterr() as an alias to @1. This undocumented feature is dropped and @ will break
rrseq() and iterr(Q).

33

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

8421

ndmap(function, valuesl; values2;; valuesN[;]) Construction of a nested list (a priori having N
dimensions) from function values. The function must be an N-variable function (or a function
accepting arbitrarily many arguments), but it is not constrained to produce only scalar val-
ues. Only in the latter case is the output really an N-dimensional “ndlist” type object. An
optional final semi-colon in the input before the closing parenthesis is allowed.

\xintdeffunc foo(a,b,c,d) = atb+c+d;

\begin{multicols}{2}
\xintthealign\xintexpr ndmap(foo, 1000,2000,3000; 100,200,300; 10,20,30; 1,2,3)\relax
\end{multicols}
[C[L 1111, 1112, 1113 17, [2231, 2232, 2233 1],
[1121, 1122, 1123 1, [[2311, 2312, 2313 1],

[1131, 1132, 1133 11, [2321, 2322, 2323 1],
[[1211, 1212, 1213 1], [2331, 2332, 2333 111,
[1221, 1222, 1223 1], [[[3111, 3112, 3113 1],

[1231, 1232, 1233 1], [3121, 3122, 3123 1],
[[1311, 1312, 1313 1], [3131, 3132, 3133 17,
[1321, 1322, 1323 1, [[3211, 3212, 3213 1,

[1331, 1332, 1333 111, [3221, 3222, 3223 1],
[[[2111, 2112, 2113 1, [3231, 3232, 3233 1],
[2121, 2122, 2123 1], [[3311, 3312, 3313 1],

[2131, 2132, 2133 1], [3321, 3322, 3323 1],
[[2211, 2212, 2213 1], [3331, 3332, 3333 1111

[2221, 2222, 2223],

ndseq(expr, varl=valuesl; var2=values2;; varN = valuesN[;]) Constructs a nested list (a pri-
ori having N dimensions) from substitutions in an expression involving N (dummy) variables.
The expression is not constrained to produce only scalar values. Only in the latter case is
the output really an N-dimensional “ndlist” type object. An optional final semi-colon in the
input before the closing parenthesis is allowed.

\begin{multicols}{2}
\xintthealign\xintexpr ndseq(a+b+c+d, a=1000,2000,3000; b=100,200,300;

c=10,20,30; d=1,2,3;)\relax
\end{multicols}% in case of page break, this makes amusing zigzag rendering

[ccr o1rra, 1112, 1113 1, [2231, 2232, 2233 1],
[1121, 1122, 1123 1], [[2311, 2312, 2313 1],

[1131, 1132, 1133 11, [2321, 2322, 2323],
[[1211, 1212, 1213 1], [2331, 2332, 2333 111,
[1221, 1222, 1223 1], [([3111, 3112, 3113 1,

[1231, 1232, 1233 1], [3121, 3122, 3123 1],
[[1311, 1312, 1313 1], [3131, 3132, 3133 11,
[1321, 1322, 1323 1], [[3211, 3212, 3213 1],

[1331, 1332, 1333 111, [3221, 3222, 3223 1,
[[[2111, 2112, 2113 1], [3231, 3232, 3233 11,
[2121, 2122, 2123 1], [[3311, 3312, 3313 1],

[2131, 2132, 2133 11, [3321, 3322, 3323 1],
[[2211, 2212, 2213 1], [3331, 3332, 3333 1111

[2221, 2222, 2223 1],

34

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Recursions may be nested, with @@@(n) giving access to the values of the outer recursion. . . and
there is even @@@@(n) to access the outer outer recursion but I never tried it!
The following keywords are recognized:

abort it is a pseudo-variable which indicates to stop here and now.

omit it is a pseudo-variable which says to omit this value and go to next one.

break(stuff) says to abort and insert stuff as last value.

<integer>-++ serves to generate a potentially infinite list. In conjunction with an abort or

break() this is often more efficient than iterating over a pre-established list of values.

\xinttheiiexpr iter(l;(@>10240)?{break(@) }{2@},i=1++)\relax
10889035741470030830827987437816582766592 is the smallest power of 2 with at least fourty one
digits.

The i=<integer>++ syntax (any letter is allowed in place of i) works only in the form <1etter>2
=<integer>++, something like x=10,17,30++ is not legal. The <integer> must be a TgX-allowable
integer.

First Fibonacci number at least [2431| and its index
% we use iterr to refer via @1 and @2 to the previous and previous to previous.
\xinttheiiexpr iterr(0,1; (@1>=2431)?{break(@l, i)}{@2+@1}, i=1++)\relax
First Fibonacci number at least 2431 and its index 2971215073, 47. If one also wants the pre-
vious Fibonacci number one only has to use break(@2, @1, i) in the above example.

2.5. Generators of arithmetic progressions

e a..b constructs the small integers from the ceil [a] to the floor |b| (possibly a decreasing
sequence) : one has to be careful if using this for algorithms that 1..0 for example is not
empty or 1 but expands to 1, 0. Again, a..b can not be used with a and b greater than 23! - 1.
Also, only about at most 5000 integers can be generated (this depends upon some TX memory
settings).

The .. has lower precedence than the arithmetic operations.

\xintexpr 1.5+0.4..2.3+1.1\relax; \xintexpr 1.9..3.4\relax; \xintexpr 2..3\relax
2,3;2,3;2,3
The step of replacing a by its ceil and b by its floor is a kind of silly overhead, but a and
b are allowed to be themselves the result of computations and there is no notion of “int” type
in \xinteval. The solution is, when a and b are given explicit integers to temporarily switch
to the \xintiiexpr parser:

\xintexpr \xintiiexpr 1..10\relax\relax
1,2, 3,4,5,6,7,8,9, 10
On the other hand integers from \xintexpr 1..10\relax are already in raw xintfrac format
for example 3/1[0] which speeds up their usage in the macros internally involved in compu-
tations... thus perhaps what one gains on one side is lost on the other side.

a..[d]..b generates “real” numbers along arithmetic progression of reason d. It does not re-
place a by its ceil, nor b by its floor. The generated list is empty if b-a and d are of opposite
signs; if d=0 or if a=b the list expands to single element a.

\xintexpr 1.5..[1.01]..11.23\relax
1.5, 2.51, 3.52, 4.53, 5.54, 6.55, 7.56, 8.57, 9.58, 10.59

At 1.4, this generator behaves in \xintfloatexpr exactly as in \xintexpr, i.e. exactly. This
is breaking change.

35

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintDigits:=6;

\xintexpr\xintfloatexpr 100..[1.23456]..110\relax\relax

\xintDigits:=16;
100, 101.23456, 102.46912, 103.70368, 104.93824, 106.1728, 107.40736, 108.64192, 109.87648
This demonstration embedded the float expression in the exact parser only to avoid the round-

ing to the prevailing precision on output, thus we can see that internally additions are done
exactly and not with 6 digits mantissas (in this example).

2.6. Python slicing and indexing of one-dimensional sequences

We denote here by list or sequence a general ople, either given as a variable or explicitly. In the
former case the parentheses are optional.l*

e (list)[n] returns the n+lth item if n>=0. If n<0 it enumerates items from the tail. Items are
numbered as in Python, the first element corresponding to n=0.

\xintexpr (0..10)[6], (0..10)[-1], (0..10)[23%18-22*19]\relax
6, 10, 7

This also works for singleton oples which are in fact a number:
\xintexpr (7)[0], (7)[-1]1, 9, (7)[-2], 9\relax
7,7,9,9

In the example above the parentheses serve to disambiguate from the raw xintfrac format such
as 7[-1] which, although discouraged, is accepted on input. And we used a trick to show that
(7)[-2] returns nil.

The behaviour changes for singleton oples which are not numbers. They are thus nutples, or
equivalently they are the bracketing (bracing, packing) of another ople. In this case, the
meaning of the syntax for item indexing is, as in Python, item extraction:

\xintexpr [0,1,2,3,4,5]1[2], [0,1,2,3,4,5][-3]\relax\newline
\xintexpr [0,[1,2,3,4,5],6][1][-1]\relax

2,3

5

e (list)[:n] produces the first n elements if n>0, or suppresses the last |n| elements if n<0.

\xintiiexpr (0..10)[:6]\relax\ and \xintiiexpr (0..10)[:-6]\relax
0,1,2,3,4,5and0, 1, 2, 3, 4

As above, the meaning change for nutples and fits with expectations from Python regarding its
sequence types:

\xintiiexpr [0..10][:6]\relax\ and \xintiiexpr [0..10][:-6]\relax
[0, 1, 2, 3, 4, 5] and [O, 1, 2, 3, 4]

e (list)[n:] suppresses the first n elements if n>0, or extracts the last |n| elements if n<0.

\xintiiexpr (0..10)[6:]\relax\ and \xintiiexpr (0..10)[-6:]\relax
6,7,8,9,10and 5, 6, 7, 8, 9, 10

As above, the meaning change for nutples and fit with expectations from Python with tuple or
list types:

\xintiiexpr [0..10][6:]\relax\ and \xintiiexpr [0..10][-6:]\relax
[6, 7, 8, 9, 10] and [5, 6, 7, 8, 9, 10]

......

entity.

36

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

e Finally, (list)[a:b] also works according to the Python " "slicing'' rules (inclusive of neg-
ative indices). Notice though that stepping is currently not supported.

\xinttheiiexpr (1..20)[6:13]\relax\ = \xinttheiiexpr (1..20)[6-20:13-20]\relax
\newline
\xinttheiiexpr [1..20][6:13]\relax\ = \xinttheiiexpr [1..20][6-20:13-20]\relax
7, 8,9, 10, 11, 12, 13=7, 8, 9, 10, 11, 12, 13
[z, 8, 9, 10, 11, 12, 131 =1[7, 8, 9, 10, 11, 12, 13]

e It is naturally possible to execute such slicing operations one after the other (the syntax
is simplified compared to before 1.4):

\xintexpr (1..50)[13:37][10:-10]\relax\newline
\xintexpr (1..50)[13:37][10:-10][-1]\relax

24, 25, 26, 27

27

2.7. NumPy like nested slicing and indexing for arbitrary oples and nutples

I will give one illustrative example and refer to the NumPy documentation for more.
Notice though that our interpretation of the syntax is more general than NumPy's concepts (of
basic slicing/indexing):

e slicing and itemizing apply also to non-bracketed objects i.e. oples,
e the leaves do not have to be all at the same depth,
e there are never any out-of-range index errors: out-of-range indices are silently ignored.

\begin{multicols}{3}

\xintdefvar myArray = ndseq(a+b+c, a=100,200,300; b=40,50,60; c=7,8,9);
myArray = \xintthealign\xintexpr myArray\relax

\columnbreak

mySubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2]\relax
myExtractedSubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2][0]\relax
\columnbreak

myExtractedSubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2][0,1]\relax
\noindent

firstExtractedScalar = \xintexpr myArray[0:2,0:2,0:2][0,1,0]\relax\newline
secondExtractedScalar = \xintexpr myArray[0,1,0]\relax\par

\end{multicols}
myArray = mySubArray = myExtractedSubArray =
[[[147, 148, 149 1, [[[147, 148 1], [157, 158 1]
[157, 158, 159 17, [157, 158 11, firstExtractedScalar = 157
[167, 168, 169 1], [[247, 248 1, secondExtractedScalar = 157
[[247, 248, 249 1, [257, 258 11]]
[257, 258, 259 1], myExtractedSubArray =
[267, 268, 269 11, [[147, 148 1],
[[347, 348, 349 1], [157, 158 1]

[357, 358, 359 1],
[367, 368, 369 111

As said before, stepping is not yet implemented. Also the NumPy extension to Python for item
selection (i.e. via a tuple of comma separated indices) is not yet implemented.

37

2.

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

8. Tacit multiplication

Tacit multiplication (insertion of a *) applies when the parser is currently either scanning the
digits of a number (or its decimal part or scientific part, or hexadecimal input), or is looking
for an infix operator, and:

(1.) encounters a count or dimen or skip register or variable or an £-TX expression, or
(2.) encounters a sub-\xintexpression, or
(3.) encounters an opening parenthesis, or
(4.) encounters a letter (which is interpreted as signaling the start of either a variable or a
function name), or
(5.) (of course, only when in state "looking for an operator") encounters a digit.
11 1ATTENTION!!!!

Explicit digits prefixing a variable, or a function, whose name starts with an e or E will
trap the parser into trying to build a number in scientific notation. So the * must be explic-
itly inserted.

\xintdefiivar e := (2a+4b+6d+N)/:7;%

\xintdefiivar f := (c+11d+22=e)//451;% 22e would raise errors

Idon't think I will fix this anytime soon...

For example, if x, y, z are variables all three of (x+y)z, x(y+z), (x+y) (x+z) will create a
tacit multiplication.

Furthermore starting with release 1.2e, whenever tacit multiplication is applied, in all
cases it always "~ "ties'' more than normal multiplication or division, but still less than

power. Thus x/2y is interpreted as x/(2y) and similarly for x/2max(3,5) but xA2y is still
interpreted as (xA2)*y and 2n! as 2#*n!.
\xintdefvar x:=30;\xintdefvar y:=5;%
\xinttheexpr (x+y)x, x/2y, xA2y, x!, 2x!, x/2max(x,y)\relax
1050, 30/10, 4500, 265252859812191058636308480000000, 530505719624382117272616960000000,
30/60
Since 1.2q tacit multiplication is triggered also in cases such as (1+2)5 or 10!20!30!.
\xinttheexpr (10+7)5, 4'4!, add(i, i=1..10)10, max(x, y)100\relax
85, 576, 550, 3000
The "~ “tie more'' rule applies to all cases of tacit multiplication. It impacts only situa-
tions with a division operator as the last seen operator, as multiplication is mathematically
associative.
\xinttheexpr 1/(3)5, (1+2)/(3+4)(5+6), 2/x(10), 2/10x,
3/y\xintiiexpr 5+6\relax, 1/x(y)\relax\
differ from\newline\xinttheexpr 1/3%5, (1+2)/(3+4)=(5+6), 2/x*(10), 2/10*x,
3/y*\xintiiexpr 5+6\relax, 1/x*(y)\relax\par
1/15, 3/77, 2/300, 2/300, 3/55, 1/150 differ from
5/3, 33/7, 20/30, 60/10, 33/5, 5/30

Note that y\xinttheiiexpr 5+6\relax would have tried to use a variable with name yl11 rather

than doing y*11: tacit multiplication works only in front of sub-\xintexpressions, not in front
of \xinttheexpressions which are unlocked into explicit digits.

Here is an expression whose meaning is completely modified by the " “tie more'' property of tacit

multiplication:

\xintdeffunc e(z):=1+z(1+z/2(1+z/3(1+z/4)));

will be parsed as

\xintdeffunc e(z):=1+z*(1+z/(2=(1+z/(3*(1+z/4)))));

38

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

which is not at all the presumably hoped for:
\xintdeffunc e(z):=1+z*(1+(z/2)*(1+(z/3)*(1+(z/4))));

2.9. User defined variables

Since release 1.1 it is possible to make an assignment to a variable name and let it be known to
the parsers of xintexpr. Since 1.2p simultaneous assignments are possible. Since 1.4 simultane-
ous assignments are possible with a right-hand-side being a nutple which will be automatically
unpacked.

\xintdefvar myPi:=3.141592653589793238462643;%

$myPi = \xinteval{myPi}$\newline % (there is already built-in Pi variable)

\xintdefvar x_1, x_2, x_3 := 10, 20, 30;%

$x_1 = \xinteval{x_1}, x_2 \xinteval{x_2}, x_3 = \xinteval{x_3}$\newline

\xintdefvar x_1, x_2, x_3 := [100, 200, 300];%

$x_1 = \xinteval{x_1}, x_2 = \xinteval{x_2}, x_3 = \xinteval{x_3}$\par
myPi =3.141592653589793238462643
x1 =10, x3 = 20, x3 =30
x1 = 100, xp =200, x3 = 300

Simultaneous assignments with more variables than values do not raise an error but simply set
the extra variables to the nil value.

\xintdefiivar a, b, c := [1, 2];% will be automatically unpacked

The value of a is \xinteval{a}, the one of b is \xinteval{b} and

the one of c is \xinteval{c}.
The value of a is 1, the one of b is 2 and the one of c is

\xintdefiivar a, b, c := 314;%

The value of a is \xinteval{a}, the one of b is \xinteval{b} and

the one of c is \xinteval{c}.
The value of a is 314, the one of b is and the one of c is

Notice that nil variables must be used with caution as they break arithmetic operations if used
as operands to them. And they are not the same as the None variables, which can also be input as [].

Simultaneous assignments with less variables than values do not raise an error but set the last
variable to be the ople concatenating the remaining values.

\xintdefiivar seq := 1..10;%

\xintdefiivar a, seq := seq;%
\xintdefiivar b, seq := seq;%
\xintdefiivar c, d, seq := seq;%

The value of a is \xinteval{a}, the one of b is \xinteval{b}, the one of c is \xinteval{c},
the one of d is \xinteval{d}, the one of seq is \xinteval{seq}.
The value of a is 1, the one of b is 2, the one of c is 3, the one of d is 4, the one of seq is 5, 6,
7, 8,9, 10.
In the above we define a variable seq but there is a built-in function seq(). It is indeed allowed
to use the same name for both a variable and a function.!® But for safety we will unassign seq now:
\xintunassignvar{a}\xintunassignvar{b}\xintunassignvar{c}\xintunassignvar{d}%
\xintunassignvar{seq}%
Single letter names a..z and A..Z are pre-declared by the package for use as a special type of
variables called "~ “dummy variables''. Unnassigning them restores this initial meaning. See fur-
ther \xintunassignvar and \xintnewdummy. Since 1.4 even assigned variables can be used in the call
signatures of function declarations.
Regarding the manipulation of an “open list” as above, there is no way to obtain with only one
use of the variable both its last item and the reduction of the variable to its truncated self. One
can do rather:

15 But until a bugfix added at release 1.4i, some built-in function names (those implementing syntax with dummy variables, and
the so-called “pseudo’-functions) were fragile under such overloading.

39

TOC, Start here, , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintdefiivar mylist := 1..10;%

\xintdefiivar z, mylist := last(mylist), mylist[:-1];%

The value of z is \xinteval{z} and mylist is now \xinteval{mylist}.\par
The value of z is 10 and mylist isnow 1, 2, 3, 4, 5, 6, 7, 8, 9.

This uses twice mylist and is about the same as doing it in two steps:

\xintdefiivar w := last(mylist);%

\xintdefiivar mylist := mylist[:-1];%

The value of w is \xinteval{w} and mylist is now \xinteval{mylist}.%

\xintunassignvar{z}\xintunassignvar{w}\xintunassignvar{mylist}\par
The value of w is 9 and mylist isnow 1, 2, 3, 4, 5, 6, 7, 8.

It is recommended generally speaking to work with “closed (i.e. bracketed) lists” because only
them and numbers can be arguments to functions (but see \xintdeffunc and the notion of vari-
adic last argument). For more on the Python-like slicing used above see subsection 2.6 and sub-
subsection 2.13.4. For more information relative to variables versus arguments see subsubsec-
tion 2.13.6.

e For catcodes issues (particularly, for the semi-colon used to delimit the fetched expres-
sion), see the discussion of \xintexprSafeCatcodes.

e Both syntaxes \xintdefvar foo := <expr>; and \xintdefvar foo = <expr>; are accepted.

e Spaces in the variable name or around the equal sign are removed and are immaterial.

e The variable names are expanded in an \edef (and stripped of spaces). Example:

\xintdefvar x\xintListWithSep{, x}{\xintSeq{0}{10}} := seq(2=*=*i, i = 0..10);%
This defines x0, x1, ..., x10 for future usage.

Legal variable names are composed of letters, digits, _ and @ and characters. A variable name
must start with a letter. Variable names starting with a @ or _ are reserved for internal usage.16

As x_1x_2 or even x_1x are licit variable names, and as the parser does not trace back its steps,
input syntax must be x_1*x_2 if the aim is to multiply such variables.

Using \xintdefvar, \xintdefiivar, or \xintdeffloatvar means that the variable value will be
computed using respectively \xintexpr, \xintiiexpr or \xintfloatexpr. It can then be used in all
three parsers, as long as the parser understands the format. Currently this means that variables
using \xintdefvar or \xintdeffloatvar can be used freely either with \xintexpr or \xintfloatexpr
but not with \xintiiexpr, and variables defined via \xintdefiivar can be used in all parsers.

When defining a variable with \xintdeffloatvar it (or generally speaking its numerical leaves)
is rounded to \xinttheDigits precision. So the variable holds the same value as would be printed
via \xintfloateval for the same computation.

Prior to 1.4e, this was the case only if the variable definition actually involved some compu-
tation.

However the \xintfloatexpr..\relax wrapper by itself induces no rounding. If it