An extensible approach to high-quality
multilingual typesetting

John Plaice!, Yannis Haralambous?, and Chris Rowley?®

! School of Computer Science and Engineering
The University of New South Wales
UNSW SYDNEY Nsw 2052, Australia

plaice@cse.unsw.edu.au
2 Département Informatique
Ecole Nationale Supérieure des Télécommunications de Bretagne
BP832, F-29285 Brest Cedex, France
Yannis.Haralambous@Qenst-bretagne.fr

3 Faculty of Mathematics and Computing
The Open University, UK

Milton Keynes MK7 6AA, United Kingdom
C.A.RowleyQopen.ac.uk

Abstract. We propose to create a new model for multilingual comput-
erized typesetting, in which each of language, script, font and character
is treated as a multidimensional entity, and all combine to form a mul-
tidimensional context. Typesetting then becomes a four-stage process of
preparing the input stream for typesetting, segmenting the stream into
clusters or words, typesetting these clusters, and then recombining them.
Each of the stages, including their respective algorithms, is dependent on
the multidimensional context. This approach will support quality type-
setting for a number of modern and ancient scripts.

1 Introduction

We present in this paper a new approach to computer typesetting, “The pro-
duction of printed matter by computer, usually by producing a master copy
for offset reproduction” [2]. The key innovation is to consider each of language,
script, font, and character as multidimensional entities, as opposed to the current
view, reiterated at length in the Unicode standard [12], that they are discrete and
unchanging. As a result, typesetting will be undertaken in a multidimensional
context — formally a point in a multidimensional space — that summarizes the
current linguistic and cultural space. This point of view, consistent with the in-
tensional programming approach, explained below, will allow for much greater
variation in the behavior of the typesetting engine. In fact, this approach will al-
low the typesetter to be integrated with more general text processing tools, such
as spell-checkers, style-checkers, content-checkers, transliterators, or translators.



2 Background

2.1 Computer Typesetting

The first steps in computer typesetting took place in the 1950s, but it was not
until 1982, when Donald Knuth introduced TgX [4], that it became possible to
use computer software for high-quality typesetting of English and mathematics,
as in The Art of Computer Programming series.

TEX’s low-level typesetter maps characters in the input file into glyphs in the
current font, and places the glyphs side-by-side, on the baseline; a font-specific
finite-state automaton inserts ligatures and kerning; a font-specific parameter
defines the stretchable interword space. Each glyph has width, height, and depth,
and these are used for higher-level layout.

The 2 system [7], developed by the first two authors, is an extension of the
TEX model supporting multilingual typesetting. It has been used for typesetting
languages in the following scripts: Latin (including Gothic and Gaelic), Greek,
Cyrillic, Armenian, Georgian, Arabic, Hebrew, Syriac, Tifinagh, Japanese, Thai,
Khmer, Devanagari (for Hindi, Sanskrit), Malayalam and Tamil.

In (2, the input character stream is processed by a series of filters, each
reading from standard input and writing to standard output. Once all of the
filters are applied, the stream is passed to the TEX low-level typesetter. Filters
have been written for character set conversion, transliteration, morphological
analysis, spell-checking, and contextual analysis, and two-dimensional layout.

There are two current limitations to the use of {2. First, because {2 is so ver-
satile, it is difficult to define a higher-level interface, that can be used by a novice.
Second, the output from applying several filters is often human-unreadable; when
this output is placed in a PDF document, the visual layout is correct but no
searching is possible, despite that fact that the PDF standard was designed
precisely for this dual-purpose.

2.2 Intensional Programming

Intensional programming [9] is an approach to computing that supposes that
there is a multidimensional context, and that all programs are capable of adapt-
ing themselves to this context. The context can be tested or manipulated, di-
mension by dimension. The context is pervasive, and can simultaneously affect
the behavior of a program at the lowest, highest and middle layers.

Intensional versioning [11] is the dual of intensional programming, where
the definitions themselves vary with the context. Any entity can be defined in
multiple versions, and when that entity is needed, the most relevant version, with
respect to the current context, is chosen. This is called the variant substructure
principle.

The ISE programming language [10] combines both intensional programming
and versioning with the features of the procedural scripting language Perl, and
it has greatly facilitated the creation of multidimensional Web pages. Similar
experimental work has been undertaken with C, C+-, Java, and Eiffel. And,



when combined with a context server, it becomes possible for several documents
or programs to be immersed in the same context.

3 Significance

The significance of high-quality computerized multilingual typesetting cannot be
overestimated. We know from Marshall McLuhan’s work [5] just how important
was the introduction of metal type to European society. Typesetting was, in
some sense, the first industrial process, upon which all others were based. It was
also the process that enabled the others, since it allowed knowledge to spread
rapidly across Europe. It also facilitated the rise of national vernaculars and the
subsequent creation of nation-states.

Today, with the development of the Internet and even more so the Web,
something different is occurring. We now have access to online documents in
hundreds of languages, using a multitude of scripts. At the same time, grandiose
endeavors such as the Million Book Project [6] (scanning of about 4% of the
books ever written) are being undertaken. Bit by bit, the world’s collected writ-
ings are being made available, to everyone. And, with miniaturization of storage,
these writings will be available not just online, but on our portable devices.

However, making these works available is not sufficient. They still need to
be printed, whether it be on a screen, in a bound paper volume, or on some
future substrate. But we are not yet at a point where we can automatically
reproduce the quality of books typeset in the nineteenth century, particularly
for the non-Latin scripts. In fact, the problem is harder, because we now need
real-time printing of documents from the Web.

In India, this problem is of utmost importance. India has 2 national languages
(Hindi and English), 1 recognized mother language (Sanskrit), and 14 official
languages, each with its own script. In addition, there are approximately 200
minority languages. Clearly, a general approach to multilingual typesetting is
necessary, that promises ease of use with high-quality.

4 Approach

In this section, we define what a context is, then show how it is to be used for
computerized typesetting. We then explain how these ideas will be validated
with real multilingual texts.

Contexts are simply dictionaries (pairs of attribute-values), where some of the
values are themselves dictionaries. For example, a context describing Australian
English could be script:Latin+lang: (English+dialect:Australian). Were-
fer to script and lang as dimensions, and to lang:dialect as a nested dimen-
sion. There is a refinement relation C on the contexts that forms a partial order.

At all times that the system is running, there is a current context. This con-
text can be modified in a relative manner, dimension by dimension, or in an ab-
solute manner. If the context is as above, then vmod[lang:dialect:Canadian]



would change it to script:Latin+lang: (English+dialect:Canadian). On the
other hand, the expression vset[script:Hanzi+lang:Chinese] would com-
pletely replace the current context with a Chinese one.

The overall algorithm is as follows. The input character stream will pass
through four separate phases: preparation, segmentation, micro-typesetting and
recombination.

The preparation phase is similar to the current situation in the {2 system.
At all times, there is an active {2 Translation Processing List (£2TP-list), which
consists of a sequence of individual {2 Translation Processes (2TP’s), which are
filters reading from standard input to standard output. What is new is that the
whole process will become context-dependent. First, the most relevant 2TP-list,
with respect to the context and using the refinement relation over contexts, is
the one that is active. Second, once chosen, it can test the current context, and
adapt its behavior, by selectively turning on or off, or even replacing, individual
NTP’s.

The preparation phase should work mainly at the character, i.e. the infor-
mation exchange level. It is designed so that additional markup may be inserted
into the character stream, so that the following stages may have more detailed
information, allowing for better typography.

The segmentation phase splits the stream of characters into clusters of char-
acters; typically, segmentation is used for word detection. In English, this is a
trivial problem, and segmentation just means recognizing the blank character,
Unicode U+020. On the other hand, in Thai, where there is no word-delimiter in
the character stream (blanks are traditionally only used as sentence-delimiters),
it is impossible to do any form of automatic processing unless a sophisticated
morphological analyzer is being used to calculate word and syllable boundaries.
The choice of segmenter is once again context-dependent.

During the micro-typesetting phase, a u-engine processes a cluster, taking
into account the current context, including language and font information, and
produces typeset output. If hyphenation or some other form of cluster-breaking is
allowed for the current language-script combination, then there will be multiple
possible typeset results, and all of these possibilities must be handled. When
dealing with complex scripts or with fonts allowing great versatility (as with
Adobe Type 3 fonts), numerous different p-engines will need to be written,
and they will be selected and their behavior will be finetuned according to the
context.

The final phase, before calling higher-level processes such as a paragrapher,
is the recombination phase. Here, the typeset clusters are placed next to each
other. For simple text, such as the English in this proposal, this simply means
placing a fixed stretchable space between typeset words. In situations such as
Thai and some styles of Arabic typesetting, kerning would take place between
words. Once again, the recombiner’s behavior is context-dependent.

Given that the choice of segmenter, the p-engine and recombiner are all
context-dependent, and that the actions of each of these, once they are chosen,
also depends on the context, this new model of typesetting engine is much more



powerful than anything previously proposed or implemented. We intend to test
it and to validate on the following scripts:

— Latin, Greek and Cyrillic, IPA: left-to-right, discrete glyphs, numerous di-
acritics, stacked vertically, above or below the base letters, widespread hy-
phenation;

— Hebrew: right-to-left, discrete glyphs, optional use of diacritics (vowels and
breathing marks), which are stacked horizontally below base letter;

— Arabic, Naskh style: right-to-left, contiguous glyphs, contextually shaped,
numerous ligatures, optional use of diacritics (vowels and breathing marks),
placed in two-dimensionals, above and below;

— Indic scripts: left-to-right, two-dimensional layout of clusters, numerous lig-
atures, applied selectively according to linguistic and stylistic criteria;

— Chinese, Japanese: vertical or left-to-right, often on fixed grid, with anno-
tations to the right or above the main sequence of text, automatic word
recognition needed for any form of analysis;

— Egyptian hieroglyphics: mixed left-to-right and right-to-left, two-dimensional
layout.

Once the basic typesetting is validated, then further experiments, viewing
language as a multidimensional entity, will be undertaken. Already with Omega,
we have typeset Spanish with both the Hebrew and Latin scripts; Berber with the
Tifinagh, Arabic and Latin scripts; Arabic with Arabic, Hebrew, Syriac, Latin
and even Arabized Latin (Latin script with a few additional glyphs reminiscent
of the Arabic script). The Arabic script can be rendered in Naskh or Nastaliq
or many other styles. Japanese can be typeset with or without furigana, little
annotations above the kangi (the Chinese characters) to facilitate pronunciation.
The objective is to incorporate all of these problems, currently solved in an ad
hoc manner, into the proposed framework; each time, the key is to correctly
summarize the context.

5 Conclusions

If the model that we propose to develop is successful, then we will be able to
produce, with relative ease, high-quality documents in many different languages
and scripts. In particular, the third author, as one of the leaders of the KTEX3
project, will develop a I TEX interface to the new functionality.

Furthermore, this new approach will provide a simple high-level interface
allowing the user to take advantage of new developments in font technologies.
In particular, Adobe Type 3 fonts are designed so that glyphs can be generated
differently upon each rendering (see [1] for a discussion of a number of effects).
On another level, the OpenType standard [8], jointly developed by Adobe and
Microsoft, allows for many different kinds of parameters — well beyond the basic
three of width, height, and depth —, multiple baselines, and a much richer notion
of ligature. The new typesetting engine will provide new capabilities, adaptable
to new kinds of parameters, and increased control.



At another level, the existing (2 system has already influenced the specifica-
tions of XML [13] (how to deal with multiple character sets) and XSL [14] (the
model for printing in multiple-directions). If the proposed research in typesetting
is successful, additional contributions to XSL may take place, by providing nat-
ural specifications for low-level XSL formatting objects, currently missing from
the standard.

Finally, this proposed model should be understood as the preparation for a
much more ambitious project, that will deal not just with low-level typesetting
but also general problems of document structuring and layout. Serious detailed
discussion has already been initiated between the {2 and IATEX3 projects.

References

1. Jacques André. Création de fontes en typographie numérique [Creating fonts for
digital typography]. Documents d’habilitation, IRISA+IFSIC, Rennes, 1993.
2. Computer Typesetting. http://www.xrefer.com/entry/441575
3. Yannis Haralambous. Unicode et typographie : un amour impossible [Unicode and
typography: an impossible couple]. Documents numériques 1:1, 2002.
4. Donald Knuth. Computers and Typesetting. 5 volumes, Addison-Wesley, 1986.
5. Marshall McLuhan. The Gutenberg Galazy: The Making of Typographic Man. Uni-
versity of Toronto Press, 1962.
6. Million Book Project.
http://zeeb.library.cmu.edu/Libraries/LIT/Projects/1MBooks.html
7. Omega Typesetting and Document Processing System.
http://omega.cse.unsw.edu.au
8. OpenType. http://wuw.opentype.org
9. John Plaice and Joey Paquet. Introduction to intensional programming. In Inten-
stonal Programming I, World-Scientific, Singapore, 1996.
10. John Plaice, Paul Swoboda and Ammar Alammar. Building intensional communi-
ties using shared contexts. In DCW 2000, LNCS 1830:55-64, 2000.
11. John Plaice and William W. Wadge. A new approach to version control. IEEE-TSFE
19(3):268-276, 1993.
12. Unicode Home Page. http://wuw.unicode.org
13. Extensible Markup Language (XML). http://www.w3c.org/XML
14. The Extensible Stylesheet Language (XSL). http://www.w3c.org/Style/XSL



