Supporting multidimensional documents with Omega*

John Plaice! and Yannis Haralambous?

Preliminary — 25 February 2001

Abstract

We propose to add multidimensionality to the Omega Typesetting and Document Pro-
cessing System. The identifiers — control sequences, fonts and input files — of an Omega
document will be allowed to vary through a multiparametric or multidimensional space. By
changing the values associated with a set of parameters, the expressions associated with those
identifiers may change, and the behavior of those expressions may also adapt.

Using this model, called intensional, will simplify the creation of macros for multilingual
computing and for fonts with many parameters. In addition, it will allow macro packages
that can do both typesetting and markup generation, as needed.

1 Introduction

The constantly changing landscape of the computing infrastructure is forcing us to develop an
understanding of programming in a context. Intensional programming is a general approach to
the building of programs whose behavior depends on an implicit multidimensional context.

An intensional context can be probed, and changed explicitly, dimension by dimension, in
order to change the control flow. Contexts are first-class values, which means that the entire
context can be replaced, cloned, split or shared with other programs.

When an identifier (variable, macro, function, etc.) is encountered in an intensional program,
then the most relevant definition for that identifier (the best-fit version) is chosen. This definition
is then evaluated or executed in the current context or in some other explicitly mentioned context.

At the semantic level, an intensional program is considered to be a function from the set of
all possible contexts (in the terminology of intensional logic, the set of all possible worlds), to the
set of all possible (ordinary) programs.

Intensional languages have been built by taking existing languages and by adding context-
manipulation primitives. This has been done for functional programming languages (ISWIM +
intensionality — Lucid), for scripting languages (Perl + intensionality — ISE) and for markup lan-
guages (HTML + intensionality — Intensional HTML, XML -+ intensionality — Multidimensional
XML).

Intensional programming is a general model that can be applied to deal with variance in
operating system kernels, file systems networks, applications, sessions, etc. It is most effective
when the name space — and the semantics — of the current context is shared by all parts of a
system, but there is clearly room for local name spaces, a subject of current research.

When a new problem is encountered in an existing intensional program or set of programs, the
typical response is to introduce a new dimension. Since the current context is rarely enumerated
explictly, only those sections of code that are affected by the new dimension need be changed; this
approach, used with great success with differential equations, ensures that code grows much more
slowly than with most forms of programming.

*Presented to the Fourth International Symposium on Multilingual Computing, March 1-3, Tokyo, Japan.
TJohn Plaice, School of Computer Science and Engineering, The University of New South Wales,

UNSW SYDNEY NSW 2052, Australia. plaice@cse.unsw.edu.au
tYannis Haralambous, Atelier Fluxus-Virus, 187 rue Nationale, F-59800 Lille, France. yannis@fluxus-virus.com

There is a Web site on intensional programming which is maintained by the first author
(Plaice), at http://www.cse.unsw.edu.au/"plaice/intensional/. Two example intensional
Web sites are http://www.cse.unsw.edu.au/ plaice/louvre/, which is a multidimensional visit
to the Louvre Museum in Paris, and http://www.cse.unsw.edu.au/ plaice/mcluhan/, which
is a collection of quotes by Marshall McLuhan, organized as poptext. In each case, the entire Web
site is a single Web page, which reorganizes itself as the current context changes. The different
parts that contribute to the page all adapt as needed to the current context.

We propose to take the same approach to Omega documents, thereby making Omega docu-
ments to be significantly more versatile than the current TEX documents.

2 The version space

Whatever kinds of objects or programs we are interested in, they are all supposed to vary within
a version space, whose grammar is given below:

version (V) == A | Q | base (+ dimension:version)*
base (b) == a | w | € | scalar
dimension (d) == scalar
scalar (s) == id | n

where
A is the least defined version;
Q is the totally defined version;
€ is the empty base value;
a is the least defined base value;
w is the totally defined base value.

It is understood that some elements of the space are refinements of other elements of the same
space. This refinement relation defines a partial order, given by the following equations:

eCbh VCQ Vie=V
bCb VCEV:V/ e+V =V
bCw VEV+V! V+Vv =V

A !
e£b AV V+V'=V'+V

V+WV'+V") =WV +V)+V"
V:(V'+V") =V V' +V.:V"

alCbh ACV

m<n VCV WCW
mCn V+wrCcv +WwW!

Suppose for example, that we wanted to encode the language and the script. Then we could
write

language:French+script:Latin for French written in the Latin script.
language:Arabic+script:Arabic for Arabic written in the Arabic script.

language:Arabic+script:Latin+transliteration:0Omega for Arabic written in the Latin
script using the Omega transliteration.

language:Arabic+script:Latin for Arabic written in the Latin script using the standard
transliteration.

language:Berber+script:Latin for Berber written in the Latin script.

language:Persian+script:Arabic+style:Nastaliq for Persian written in Nastaliq.
Now suppose that we wanted to encode dialect differences. Then we could write

language: (French+dialect:Québec)+script:Latin for Québec French.

language: (French+dialect: (Québec+region: Gaspésie))+script:Latin for the French
of the Gaspésie region.

We say that French is the base value of language, while the full value of language is
French+dialect: (Québectregion:Gaspésie). We call language and language:dialect dimen-
sions. So, as we can see, the space includes both multidimensionality and nesting. One can think
of a multidimensional spreadsheet, where any cell can have as value a whole new multidimensional
spreadsheet.

We write language :French C language: (French+dialect:Québec), which means the latter
is a refinement of the former.

3 Versioned macros

Control sequences — the macro identifiers — in TEX and Omega consist of an escape delimiter
followed by a sequence of letters, as in \macro. To allow for versions of macros, we allow a
version modifier to appear between the escape delimiter and the sequence of letters. Version
modifiers are designated through the use of two new catcodes, begin version modifier and end
version modifier, which we will designate in the rest of the document as < and >. For example,
\<language:French>chaptername would be French language version of the \chaptername macro.

It is assumed that at all times, a program is running with a current version, which is simply
a point in the version space. The current version can be changed absolutely, using the <—> pair,
or relatively, using the [-] pair (new catcodes again).

Running \vset<language:Arabic+script:Arabic> will replace the current version with ver-
sion language:Arabic+script:Arabic. From there, running \vset[script:Latin] will modify
the current version to language:Arabic+script:Latin. The use of a single colon (‘’) replaces
only the base value.

If \vset<language: (French+dialect: (Québec+region:Gaspésie))+script:Latin> is en-
countered, we get a new version. Then running \vset [language: :Arabic] changes the current
version to language:Arabic+script:Arabic. The use of the double colon (‘::’) replaces the full
value.

For a given dimension dim, we can write \the\vbase<dim> or \the\vfull<dim> to access
the base or full values of dim in the current version.

When a control sequence is encountered, then all of the current versions of the control sequence
are examined, in order to find the best-fit version, which is the maximum of all of those versions
less than or equal to the current version. That version is then chosen, and we continue.

Except... you can play with the versions when actually using a control sequence! Hence
\<requested><running>macro looks for the best-fit to the requested version macro, as opposed to
the current version, then runs the body of macre under the running version (itself interpreted
within the current version).

With two more new catcodes, 7 and !, we can write \?7<requested><running>macro, in which
case the running version is interpreted according to the requested version, not the current version.
We can also write \ ! <requested><running>macro, in which case the running version is interpreted
according to the best-fit version, not the current version.

4 Versioned fonts

Versioned fonts would allow us to deal with problems of glyph changes when writing in different
directions, with the different parameters associated with PostScript fonts, and with the successive
version of fonts released by foundries, etc. We are currently working on developing font metrics
that would allow us to deal with these complexities.

Currently fonts are defined as \font name=filename. To access versioned fonts, we need to
add a version qualifier \font name=<version>filename.

5 Versioned files

If the file system itself or the interface to the file system, such as kpathsea, understands the
version language, then we can also have versioned input files. The most natural mechanism is to
do this at the file system level, but then would make any solution non-portable. We still need to
study this problem a bit more before choosing a solution.

Currently files are read as \input filename. To access versioned files, we need to add a version
qualifier \ input<wversion>filename.

6 Conclusion
Addding multidimensionality to Omega will tremendously simplify the programming of language-

dependent macros, as well as the creation of adaptable documents. More details are forthcoming
as all this is implemented.

