
The zeckendorf package
Jean-François Burnol
jfbu (at) free (dot) fr

Package version: 0.9b (2025/10/07)

From source file zeckendorf.dtx of 07-10-2025 at 21:41:02 CEST

Part I. User manual

Mathematical background . 1, p. 1

Use on the command line . 2, p. 3

Use as a LATEX package . 3, p. 3

Use with Plain ε-TEX . 4, p. 10

Changes . 5, p. 10

License . 6, p. 11

Part II. Commented source code

Core code . 7, p. 12

Interactive code . 8, p. 25

LATEX code . 9, p. 27

Part I.
User manual
1. Mathematical background
Let us recall that the Fibonacci sequence starts with F0 = 0, F1 = 1, and obeys

the recurrence Fn = Fn-1 + Fn-2 for n ≥ 2. So F2 = 1, F3 = 2, F4 = 3 and by a
simple induction Fk = k-1. Ahem, not at all! Here are the first few, starting

at F2 = 1:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 . . .

Zeckendorf's Theorem says that any positive integer has a unique represen-
tation as a sum of the Fibonacci numbers Fn, n ≥ 2, under the conditions that
no two indices differ by one, and that no index is repeated. For example:

10 = 8 + 2

100 = 89 + 8 + 3

1,000 = 987 + 13

http://www.ctan.org/pkg/zeckendorf

1. Mathematical background

10,000 = 6765 + 2584 + 610 + 34 + 5 + 2

100,000 = 75025 + 17711 + 6765 + 377 + 89 + 21 + 8 + 3 + 1

1,000,000 = 832040 + 121393 + 46368 + 144 + 55

10,000,000 = 9227465 + 514229 + 196418 + 46368 + 10946 + 4181 + 377 + 13 + 3

100,000,000 = F39 + F37 + F35 + F32 + F30 + F28 + F23 + F21 + F15 + F13 + F11 + F9 + F4

This is called the Zeckendorf representation, and it can be given either as

above, or as the list of the indices (in decreasing or increasing order), or

as a binary word which in the examples above are

10 = 10010Zeckendorf

100 = 1000010100Zeckendorf

1,000 = 100000000100000Zeckendorf

10,000 = 1010010000010001010Zeckendorf

100,000 = 100101000001001001010101Zeckendorf

1,000,000 = 10001010000000000010100000000Zeckendorf

10,000,000 = 1000001010010010100001000000100100Zeckendorf

100,000,000 = 10101001010100001010000010101010000100Zeckendorf

1,000,000,000 = 1010000100100001010101000001000101000101001Zeckendorf

The least significant digit says whether the Zeckendorf representation uses

F2 and so on from right to left (one may prefer to put the binary digits in

the reverse order, but doing as above is more reminiscent of binary, decimal,

or other representations using a given radix). In the next-to-last example

the word length is 39 - 2 + 1 = 38, and in general it is K - 1 where K is the

largest index such that FK is at most equal to the given positive integer.

For 1,000,000,000 this maximal index is 44 and indeed the associated word has

length 43.

In a Zeckendorf binary word the sub-word 11 never occurs, and this, com-

bined wih the fact that the leading digit is 1, characterizes the Zeckendorf

words.

Donald Knuth (whose name may ring some bells to TEX users) has shown that
defining a ◦ b as

∑
i

∑
j Fai+bj where the ai's and the bj's are the indices

involved in the respective Zeckendorf representations of a and b is an asso-

ciative operation on positive integers (it is obviously commutative).

The Fibonacci recurrence can also be prolungated to negative n's, and it

turns out that F-n = (-1)
n-1Fn. Donald Knuth has shown that any relative in-

teger has a unique representation as a sum of these ``NegaFibonacci'' numbers

F-n, n ≥ 1, again with the condition that no index is repeated and no two in-
dices differ by one. In the special case of zero, the representation is an

empty sum. Here is the sequence of these ``NegaFibonacci'' numbers starting

at n = -1:

1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144, 233, -377, 610, -987 . . .

2

2. Use on the command line

2. Use on the command line
Open a command line window and execute:

etex zeckendorf

then follow the displayed instructions.

The (TEX Live) *tex executables are not linked with the readline library,

and this makes interactive use quite painful. If you are on a decent system,

launch the interactive session rather via

rlwrap etex zeckendorf

for a smoother experience.

3. Use as a LATEX package
As expected, add to the preamble:

\usepackage{zeckendorf}

There are no options.

xintexpr is loaded, macros are defined to go from integers to Zeckendorf

representations and back, and to compute the Knuth multiplication of positive

integers.

\xintiieval is extended with the functions fib(), fibseq(), zeckinde⤸
x() and zeck(). The $ is added to the syntax as infix operator (with same

precedence as multiplication) doing the Knuth multiplication.

\ZeckTheFN This macro computes Fibonacci numbers.

\ZeckTheFN{100}, \ZeckTheFN{100 + 15}\newline
354224848179261915075, 483162952612010163284885
As shown, the argument can be an integer expression (only in the sense
of \inteval, not in the one of \xinteval, for example you can not
have powers only additions and multiplications). Negative arguments
are allowed:

\ZeckTheFN{0}, \ZeckTheFN{-1}, \ZeckTheFN{-2}, \ZeckTheFN{-3},

\ZeckTheFN{-4}

0, 1, -1, 2, -3

The syntax of \xintiieval is extended via addition of a fib() function,
which gives a convenient interface:

\xintiieval{seq(fib(n), n=-5..5, 10, 20, 100)}
5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 55, 6765, 354224848179261915075

\xintiieval{seq(fib(2^n), n=1..7)}

1, 3, 21, 987, 2178309, 10610209857723, 251728825683549488150424261

\ZeckTheFSeq This computes not only one but a whole contiguous series of Fi-
bonacci numbers but its output format is a sequence of braced numbers,

and tools such as those of xinttools are needed to manipulate its out-

put. For this reason it is not further documented here.

The syntax of \xintiieval is extended via addition of a fibseq() func-
tion, which gives a convenient interface:

3

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint

3. Use as a LATEX package

\xintiieval{fibseq(10,20)}\newline
[55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765]
Notice the square brackets used on output. In the terminology of xin-
texpr, the function produces a nutple. Use the * prefix to remove the
brackets:

\xintiieval{reversed(*fibseq(-20,-10))}

-55, 89, -144, 233, -377, 610, -987, 1597, -2584, 4181, -6765

IMPORTANT: currently, fibseq(a,b) falls into an infinite loop if a ≥ b.
Use it only with a < b. Above we used the reversed() function to get the

output in order from F-10 to F-20 and not from F-20 to F-10.

\ZeckIndex This computes the largest index k such that Fk ≤ x, where x is the
input. The input is only f-expanded, if you need it to be an expression

you must wrap it in \xintiieval.

The syntax of \xintiieval is extended via addition of a zeckindex()

function, which gives a more convenient interface.

IMPORTANT: The input must be positive (for now). No check is made that
this is the case.

Note: Input must not have more than a few thousand decimal digits.

\ZeckIndex{123456789123456789123456789123456789}
169

\ZeckTheFN{\ZeckIndex{123456789123456789123456789123456789}}
93202207781383214849429075266681969

\ZeckTheFN{1+\ZeckIndex{123456789123456789123456789123456789}}
150804340016807970735635273952047185

\ZeckIndex{\xintiieval{2^100}}
145

\xintiieval{zeckindex(2^100)}
145

\xintiieval{fib(zeckindex(2^100))}
898923707008479989274290850145

\xintiieval{2^100}
1267650600228229401496703205376

\xintiieval{fib(1 + zeckindex(2^100))}
1454489111232772683678306641953

\xintiieval{seq(zeckindex(10^n), n = 0..40)}

2, 6, 11, 16, 20, 25, 30, 35, 39, 44, 49, 54, 59, 63, 68, 73, 78, 83, 87,

92, 97, 102, 106, 111, 116, 121, 126, 130, 135, 140, 145, 150, 154, 159,

164, 169, 173, 178, 183, 188, 193

\ZeckIndices This computes the Zeck representation as a comma separated list
of indices. The input is only f-expanded, if you need it to be an ex-

pression you must wrap it in \xintiieval.

4

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

3. Use as a LATEX package

The macro is also known as \ZeckZeck.

The syntax of \xintiieval is extended via addition of a zeck() function,

which gives a more convenient interface.

IMPORTANT: The input must be positive. No check is made that this is the
case.

Note: Input must not have more than a few thousand decimal digits.

\ZeckZeck{123456789123456789123456789}

126, 123, 119, 117, 109, 104, 101, 95, 93, 90, 86, 84, 81, 76, 72, 69,

63, 61, 59, 55, 52, 50, 46, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 20,

14, 11, 9, 6, 4, 2

Here is with zeck():

\xintiieval{zeck(123456789)}

[40, 36, 34, 28, 26, 24, 18, 16, 13, 7, 5, 2]

There are brackets, because the zeck() function produces a nutple (see
xintexpr documentation). You can use the * prefix to unpack.

\xintiieval{*zeck(123456789123456789123456789)}

126, 123, 119, 117, 109, 104, 101, 95, 93, 90, 86, 84, 81, 76, 72, 69,

63, 61, 59, 55, 52, 50, 46, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 20,

14, 11, 9, 6, 4, 2

It is easy with this syntax to manipulate the indices in various ways.
Let's simple print them from smallest to largest:

\xintiieval{*reversed(zeck(123456789123456789123456789))}

2, 4, 6, 9, 11, 14, 20, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 46, 50,

52, 55, 59, 61, 63, 69, 72, 76, 81, 84, 86, 90, 93, 95, 101, 104, 109,

117, 119, 123, 126

The power of the \xintiieval, always eager to prove A=A, can be demon-
strated:

\xintiieval{add(fib(n), n = *zeck(123456789))}
123456789

\xintiieval{add(fib(n), n = *zeck(123456789123456789123456789))}

123456789123456789123456789

TEX-nical note: There is also \ZeckBList which produces the indices as a sequence of

braced items. To manipulate conveniently such outputs you need macros from xinttools

or from LATEX3. It is easier to use the powerful \xintiieval interface such as for

example:

The first five indices are \xintiieval{*zeck(123456789123456789123456789)[:5]}.

The first five indices are 126, 123, 119, 117, 109.

The Zeckendorf representation of 123456789123456789123456789 uses

\xintiieval{len(zeck(123456789123456789123456789))} Fibonacci numbers.

The Zeckendorf representation of 123456789123456789123456789 uses 40 Fibonacci num-

bers.

5

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint

3. Use as a LATEX package

\ZeckWord This computes the Zeck representation as a binary word. The input
is only f-expanded, if you need it to be an expression you must wrap it

in \xintiieval.

IMPORTANT: The input must be positive. No check is made that this is the
case.

Note: Input must not have more than a few thousand decimal digits.

\ZeckWord{123456789}
100010100000101010000010100100000101001

\ZeckWord{\xintiieval{2^40}}

1000100000001000001010000010101010101010001000101010100010

As TEX does not by default split long strings of digits at the line ends,
we gave so far only some small examples. See xint or bnumexpr documen-
tations for a \printnumber macro able to add linebreaks. Using such an
auxiliary (a bit refined) we can for example obtain this:

\ZeckWord{\xintiieval{2^100}}

1010000010010010101010100100000000100100100101010001010010000100100⤸
1010010000000010100001001010101000000101001000100000000010010010001⤸
0010010100

Compare the above with the list of indices in the Zeckendorf representa-

tion: 145, 143, 137, 134, 131, 129, 127, 125, 123, 120, 111, 108, 105,

102, 100, 98, 94, 92, 89, 84, 81, 78, 76, 73, 64, 62, 57, 54, 52, 50, 48,

41, 39, 36, 32, 22, 19, 16, 12, 9, 6, 4.

\ZeckNFromIndices This computes an integer from a list of (comma separated)
indices. These indices do not have to be positive, their order is in-

different and they can be repeated or differ by only one unit. The list

is allowed to be empty. Contiguous commas (or commas separated only by

space characters) act as a single one, a final comma is tolerated. A new

f-expansion is done at each item, they can be (f-expandable) macros.

\ZeckNFromIndices{}\newline

\ZeckNFromIndices{100, ,,, 90, 80, 70, 60, 50, 40, 30 , , ,,,}
0
357128524055170099155

\ZeckIndices{357128524055170099155}
100, 90, 80, 70, 60, 50, 40, 30

\ZeckIndices{\ZeckNFromIndices{100, 90, 80, 70, 60, 50, 40, 30}}
100, 90, 80, 70, 60, 50, 40, 30

\ZeckNFromIndices{3,-1,4,-1,5,-9,2,-6,5,-3}

46

There is no associated \xintiieval function (currently) but it is a
one-liner in its syntax:

\xintiieval{add(fib(i), i= 100, 90, 80, 70, 60, 50, 40, 30)}
357128524055170099155

6

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/bnumexpr

3. Use as a LATEX package

\xintiieval{add(fib(i), i= 3, -1, 4, -1, 5, -9, 2, -6, 5, -3)}
46

\xintiieval{add(fib(i), i = *zeck(10^60))}

100

TEX-nical note: The first version of this documentation was using 1e60 in place of

10^60, which did not crash by sheer (mis-) luck (1+1e60 would have) and actually gave

the correct result by some improbable combination of factors. The author had forgotten

than the scientific notation 1e60 is not accepted (attow, using xintexpr 1.4o) in \xi⤸
ntiieval, contrarily to what happens with \xinteval. There is a shortcut for decimal

powers which is a bit confidential: 1[⟨exponent⟩], so here we can use 1[60] or more
generally n[E] as shortcut for E added trailing zeros. These things are, or should

be, explained in some sections in fine print (or which should be in fine print) in the

xintexpr PDF documentation.

\ZeckNFromWord This computes a positive integer from a binary word. The word
can be arbitrary apart from not being empty.

\ZeckNFromWord{1}, \ZeckNFromWord{11}, \ZeckNFromWord{111},

\ZeckNFromWord{1111}, \ZeckNFromWord{11111}
1, 3, 6, 11, 19

\ZeckNFromWord{\xintReplicate{30}{10}}
4052739537880

\ZeckWord{4052739537880}

10

\ZeckKMul This computes the Knuth multiplication of its two positive integer
arguments. The two arguments are only f-expanded, you need to wrap each

in an \xintiieval if it is an expression.

The syntax of \xintiieval is extended via addition of a $ infix operator,

which gives a more convenient interface.

\ZeckKMul{100}{200}
44800

\ZeckKMul{\ZeckKMul{100}{200}}{300}
30079200

\ZeckKMul{100}{\ZeckKMul{200}{300}}

30079200

\xintiieval{100 $ 200, (100 $ 200) $ 300, 100 $ (200 $ 300)}

44800, 30079200, 30079200

The implementation is done via the Knuth definition: each operand is
converted to a Zeckendorf representation, the indices are added and the
sum of Fibonacci numbers is computed. Let us mention here that we could
have defined a knuth() function easily using the powerful \xintiieval
syntax:1

1We could not have used \xintdefiifunc here to define knuth(), so we used the \xintNewFunction
interface. The sole inconvenient is that when using knuth() it is as if we injected by hand the
replacement expression, which will have to be parsed by \xintiieval.

7

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

3. Use as a LATEX package

\xintNewFunction{knuth}[2]

{add(fib(x), x = flat(ndmap(+, *zeck(#1); *zeck(#2);)))}

\xintiieval{knuth(100,200), knuth(knuth(100,200),300),

knuth(100,knuth(200,300))}

44800, 30079200, 30079200

The advantage of knowing this is that we can now check that our intuition
about what happens when we compute (a $ b) $ c, which Knuth proved to
be the same as a $ (b $ c), is valid:

\xintNewFunction{knuththree}[3]

{add(fib(x), x= flat(ndmap(+, *zeck(#1); *zeck(#2); *zeck(#3);)))}

\xintiieval{knuththree(100, 200, 300)}

\newline

\xintiieval{knuththree(1000, 2000, 3000), (1000 $ 2000) $ 3000,

1000 $ (2000 $ 3000)}

30079200

29998632000, 29998632000, 29998632000

\ZeckSetAsKnuthOperator This takes as input a charcter, or multiple char-
acters, and turns them (as a unit) work into an infix operator inside

of \xintiieval computing the Knuth multiplication. The pre-defined

use of $ for this will not be canceled. You need to also do \ZeckDel⤸
eteOperator{$} if you want this meaning of $ to be lost. In general

repeated usage will only extend the list of operators doing the Knuth

multiplication without removing the previously defined ones, except if

\ZeckDeleteOperator is used for them.

IMPORTANT: There is NO WARNING if you override a pre-existing opera-
tor from the \xintiieval syntax (and not all such operators are user-

documented because some exist for internal purposes only). But if done

inside a group or environment, the former meaning will be recovered on

exit.

A possible choice is to use $$. This may help avoiding syntax high-

lighting problems in your editor (or make them worse as I am currently

experimenting while writing this). You can use $ $ it is the same as $$

to \xintiieval.

\ZeckSetAsKnuthOperator{$$}

\xintiieval{100 $$ 200, 200 $ $ 300, 100 $ $ 300}

44800, 134400, 67200

There are a few important points to be aware of:

• You can use a letter such as o as operator but it then must be used
prefixed by \string which is not convenient:

\ZeckSetAsKnuthOperator{o}

\xintiieval{100 \string o 200 \string o 300}

30079200
• With a Unicode engine, they are plenty of available characters that
are already of catcode 12. For example:

8

3. Use as a LATEX package

\ZeckSetAsKnuthOperator{⊙}
\xintiieval{100 ⊙ 200 ⊙ 300}
30079200

You can also use letters from Greek or other scripts, but make sure

they have catcode 12.

• It is not possible to use as operator a control sequence such as

\odot. It has to be one or more characters. It can not be the

period (full stop) which, although not being a predefined operator

is recognized as decimal separator (even in \xintiieval due to some

shared code with \xinteval).

• In case your document is compiled with pdflatex or latex and uses

Babel, some characters may be catcode active. To use them as part

of a name of an operator defined by \ZeckSetAsKnuthOperator, each

such catcode active character has to be prefixed with \string. But

\string is then unneeded inside \xintiieval (since xintexpr 1.4n).

\ZeckIndexedSum This is a utility which produces (expandably) F_a + F_{a'}⤸
+ ... where a, a', ... are the Zeckendorf indices in decreasing order
and the Fibonacci numbers are represented by the letter F and the index
as subscript. Can only be used from inside math mode.

$\ZeckIndexedSum{100000000000000}$.

F68 + F65 + F63 + F61 + F59 + F54 + F47 + F43 + F41 + F39 + F37 + F35 + F31 + F29 + F25 +

F22 + F16 + F9 + F4 + F2.

The + is actually injected by \ZeckIndexedSumSep which defaults to mean

+\allowbreak, so that as shown above a linebreak can be inserted by TEX.

\ZeckExplicitSum This is a utility which produces (expandably) F_a + F_{a⤸
'} + ... where a, a', ... are the Zeckendorf indices in decreasing
order, and the Fibonacci numbers are written explicitly using decimal
digits. May be used outside of math mode, but there will then be no
spacing around the + signs.

$\ZeckExplicitSum{100000000000000}$.

72723460248141+17167680177565+6557470319842+2504730781961+956722026041+

86267571272 + 2971215073 + 433494437 + 165580141 + 63245986 + 24157817 +

9227465 + 1346269 + 514229 + 75025 + 17711 + 987 + 34 + 3 + 1.

The + is actually injected by \ZeckExplicitSumSep which defaults to

mean +\allowbreak, so that as shown above a linebreak can be inserted

by TEX.

However, as one can see above and was already mentioned, TEX and LATEX

do not know out-of-the-box to split strings of digits at line endings.

Hence the first line is squeezed, which is not pleasing, and a number

extends nevertheless into the margin. The actual printing (and compu-

tation from the index) of the Fibonacci number is done via \ZeckExplici⤸
tOne whose default definition is to be an alias of \ZeckTheFN.

So if we redefine for example this way
\renewcommand\ZeckExplicitOne[1]{F_{#1}}

9

http://www.ctan.org/pkg/xintexpr

4. Use with Plain ε-TEX

we will simply reconstruct what \ZeckIndexedSum does. Or, with the help
of a xinttools utility we can inject breakpoints in between digits:

\renewcommand\ZeckExplicitOne[1]

{\xintListWithSep{\allowbreak}{\ZeckTheFN{#1}}}

$\ZeckExplicitSum{100000000000000}$.

72723460248141 + 17167680177565 + 6557470319842 + 2504730781961 + 956722

026041 + 86267571272 + 2971215073 + 433494437 + 165580141 + 63245986 + 241

57817 + 9227465 + 1346269 + 514229 + 75025 + 17711 + 987 + 34 + 3 + 1.

Expert LATEX users will know how to achieve a result such as this one,

which pleasantly decorate the linebreaks:

72723460248141 + 17167680177565 + 6557470319842 + 2504730781961 + 956722⤸
026041 + 86267571272 + 2971215073 + 433494437 + 165580141 + 63245986 + 241⤸
57817 + 9227465 + 1346269 + 514229 + 75025 + 17711 + 987 + 34 + 3 + 1.

4. Use with Plain ε-TEX
You will need to input the core code using:

\input zeckendorfcore.tex

IMPORTANT: after this \input, the catcode regimen is a specific one (for
example _, :, and ^ all have catcode letter). So, you will probably want to

emit \ZECKrestorecatcodes immediately after this import, it will reset all

modified catcodes to their values as prior to the import.

Then you can use the exact same interface as described in the previous sec-

tion.

5. Changes

0.9b (2025/10/07)
Bug fixes:

• The instructions for interactive use mentioned 1e100 as possible input,

but the author had forgotten that this syntax is not legitimate in \xinti⤸
ieval (for example 1+1e10 crashes immediately).

• The code tries at some locations to be compatible with xintexpr versions

earlier than 1.4n. But these versions did not load xintbinhex automati-

cally and the needed \RequirePackage or \input for Plain TEX was lacking

from the zeckendorf code.

Other changes: In the interactive interface, the input may now start with an
\xintiieval function such as binomial whose first letter coincides with

one of the letter commands without it being needed to for example add some ⤸
\empty control sequence first. On the other hand, it was possible to use

the full command names, now only their first letters (lower or uppercase) are

recognized as such.

0.9alpha (2025/10/06) Initial release.

10

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/zeckendorf

6. License

6. License

Copyright (c) 2025 Jean-François Burnol

| This Work may be distributed and/or modified under the
| conditions of the LaTeX Project Public License 1.3c.
| This version of this license is in

> <http://www.latex-project.org/lppl/lppl-1-3c.txt>

| and version 1.3 or later is part of all distributions of
| LaTeX version 2005/12/01 or later.

This Work has the LPPL maintenance status "author-maintained".

The Author and Maintainer of this Work is Jean-François Burnol.

This Work consists of the main source file and its derived files

zeckendorf.dtx,
zeckendorfcore.tex, zeckendorf.tex, zeckendorf.sty,
README.md, zeckendorf-doc.tex, zeckendorf-doc.pdf

11

Part II.
Commented source code
Core code . 7, p. 12

Interactive code . 8, p. 25

LATEX code . 9, p. 27

7. Core code

Loading xintexpr and setting catcodes . 7.1, p. 12
Support for computing Fibonacci numbers: \ZeckTheFN, \ZeckTheFSeq 7.2, p. 13
\ZeckNearIndex, \ZeckIndex . 7.3, p. 14
\ZeckIndices, \ZeckZeck . 7.4, p. 16
\ZeckBList . 7.5, p. 17
\ZeckIndexedSum, \ZeckExplicitSum . 7.6, p. 18
\ZeckWord . 7.7, p. 18
The Knuth Multiplication: \ZeckKMul . 7.8, p. 19
\ZeckNFromIndices . 7.9, p. 20
\ZeckNFromWord . 7.10, p. 20
Extension of the \xintiieval syntax with fib(), fibseq(), zeck() and zeckindex() functions . .
. 7.11, p. 21

Extension of the \xintiieval syntax with $ as infix operator for the Knuth multiplication . . .
. 7.12, p. 22

A general remark is that expandable macros (usually) f-expand their arguments, and

most are f-expandable. This f-expandability is achieved via \expanded triggers, di-

verging a bit from the overall style of the xint codebase (which predates availability

of \expanded).

Extracts to zeckendorfcore.tex.

7.1. Loading xintexpr and setting catcodes
0.9alpha had a left-over \noexpand before the \endinput due to an oversight after

replacing an \edef by a \def, embarrassing but unimportant. Also it made at a few

places some effort to be compatible with older xint, but did not explicitly require

xintbinhex, which is automatically loaded only since xintexpr 1.4n.

1 \input xintexpr.sty
2 \input xintbinhex.sty
3 \wlog{Package: zeckendorfcore 2025/10/07 v0.9b (JFB)}%
4 \edef\ZECKrestorecatcodes{\XINTrestorecatcodes}%
5 \def\ZECKrestorecatcodesendinput{\ZECKrestorecatcodes\endinput}%
6 \XINTsetcatcodes%

12

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr

7. Core code

Small helpers related to \expanded-based methods. But the package only has a few macros

and these helpers are used only once or twice, some macros needing their own terminators

due to various optimizations in the code organization.

7 \def\zeck_abort#1\xint:{{}}%
8 \def\zeck_done#1\xint:{\iffalse{\fi}}%

7.2. Support for computing Fibonacci numbers: \ZeckTheFN, \ZeckTheFSeq
The multiplicative algorithm is as in the bnumexpr manual (at 1.7b), but termination is

different and simply leaves F_n;F_{n-1}; in input stream (in a form requiring \xintth⤸
e).

\Zeck@FPair and \Zeck@@FPair are not public interface. The former is a wrapper of

the latter to handle negative or zero argument.

The public \ZeckTheFN uses the \Zeck@FPair which accepts a negative or zero argument.

The non public \Zeck@@FN uses \Zeck@@FPair and is thus limited to positive argument,

also it remains in \xintexpr encapsulated format requiring \xintthe for explicit

digits.

9 \def\Zeck@FPair#1{\expandafter\zeck@fpair\the\numexpr #1.}%
10 \def\zeck@fpair #1{%
11 \xint_UDzerominusfork
12 #1-\zeck@fpair_n
13 0#1\zeck@fpair_n
14 0-\zeck@fpair_p
15 \krof #1%
16 }%
17 \def\zeck@fpair_p #1.{\Zeck@@FPair{#1}}%
18 \def\zeck@fpair_n #1.{%
19 \ifodd#1 \expandafter\zeck@fpair_ei\else\expandafter\zeck@fpair_eii\fi
20 \romannumeral`&&@\Zeck@@FPair{1-#1}%
21 }%
22 \def\zeck@fpair_ei{\expandafter\zeck@fpair_fi}%
23 \def\zeck@fpair_eii{\expandafter\zeck@fpair_fii}%
24 \def\zeck@fpair_fi#1;#2;{%
25 \romannumeral0\xintiiexpro #2\expandafter\relax\expandafter;%
26 \romannumeral0\xintiiexpro -#1\relax;%
27 }%
28 \def\zeck@fpair_fii#1;#2;{%
29 \romannumeral0\xintiiexpro -#2\expandafter\relax\expandafter;%
30 #1;%
31 }%
32 \def\Zeck@@FPair#1{%
33 \expandafter\Zeck@start
34 \romannumeral0\xintdectobin{\the\numexpr#1\relax};%
35 }%
36 \def\Zeck@start 1#1{%
37 \csname Zeck@#1\expandafter\endcsname
38 \romannumeral0\xintiiexpro 1\expandafter\relax\expandafter;%
39 \romannumeral0\xintiiexpro 0\relax;%
40 }%
41 \expandafter\def\csname Zeck@0\endcsname #1;#2;#3{%
42 \csname Zeck@#3\expandafter\endcsname

13

http://www.ctan.org/pkg/bnumexpr

7. Core code

43 \romannumeral0\xintiiexpro (#1+2*#2)*#1\expandafter\relax\expandafter;%
44 \romannumeral0\xintiiexpro #1*#1+#2*#2\relax;%
45 }%
46 \expandafter\def\csname Zeck@1\endcsname #1;#2;#3{%
47 \csname Zeck@#3\expandafter\endcsname
48 \romannumeral0\xintiiexpro 2*(#1+#2)*#1+#2*#2\expandafter\relax\expandafter;%
49 \romannumeral0\xintiiexpro (#1+2*#2)*#1\relax;%
50 }%
51 \expandafter\let\csname Zeck@;\endcsname\empty

For individual Fibonacci numbers, we have non public \Zeck@@FN and public \ZeckTheFN.

52 \def\Zeck@@FN{\expandafter\zeck@@fn\romannumeral`&&@\Zeck@@FPair}%
53 \def\zeck@@fn#1;#2;{#1}%
54 \def\ZeckTheFN{\xintthe\expandafter\zeck@@fn\romannumeral`&&@\Zeck@FPair}%

The computation of stretches of Fibonacci numbers is not needed for the package, but

is provided for user convenience. This is lifted from the development version of the

\xintname user manual, which refactored a bit the code which has been there for over ten

years. As we want to add a fibseq() function to \xintiieval, it is better to make it

f-expandable.

Here we also handle negative arguments but still require the second argument to be

larger (more positive) than the first.

55 \def\ZeckTheFSeq#1#2{%#1=starting index, #2>#1=ending index
56 \expanded\bgroup\expandafter\ZeckTheF@Seq
57 \the\numexpr #1\expandafter.\the\numexpr #2.%
58 }%

The #1+1 is because \Zeck@FPair{N} expands to F_{N};F_{N-1};, so here we will have

F_{A+1},F_{A}; as starting point. We want up to F_B. If B=A+1 there will be nothing to

do.

59 \def\ZeckTheF@Seq #1.#2.{%
60 \expandafter\ZeckTheF@Seq@loop
61 \the\numexpr #2-#1-1\expandafter.\romannumeral0\Zeck@FPair{#1+1}%
62 }%

Now leave in stream one coefficient, test if we have reached B and until then apply

standard Fibonacci recursion. We insert \xintthe although not needed for typesetting

but this is useful for matters of defining an associated fibseq() function.

63 \def\ZeckTheF@Seq@loop #1.#2;#3;{% standard Fibonacci recursion
64 {\xintthe#3}\ifnum #1=\z@ \expandafter\ZeckTheF@Seq@end\fi
65 \expandafter\ZeckTheF@Seq@loop
66 \the\numexpr #1-1\expandafter.%
67 \romannumeral0\xintiiexpro #2+#3\relax;#2;%
68 }%
69 \def\ZeckTheF@Seq@end#1;#2;{{\xintthe#2}\iffalse{\fi}}%

7.3. \ZeckNearIndex, \ZeckIndex
If the ratio of logarithms was the exact mathematical value it would be certain (via

rough estimates valid at least for say x ≥ 10, and even smaller, but anyhow we can check
manually it does work) that its integer rounding gives an integer K such that either K

or K-1 is the largest index J with FJ ≤ x. But the computation is done with only about

14

7. Core code

8 or 9 digits of precision. So certainly this assumption fails for x having more than

one hundred million decimal digits, and would become a bit risky with an input having

ten million digits.

But this is way beyond the reasonable range for usage of the package, as anyhow xint

can handle multiplications only with operands of about up to 13000 digits, so there is

no worry.

xintfrac's \xintiRound{0} is guaranteed to round correctly the input it has been

given. This input is some approximation to an exact theoretical value involving ratio

of logarithms (and square root of 5). Prior to rounding the computed numerical approx-

imation, we are close to the exact theoretical value, where ``close'' means we expect

to have about 8 leading digits in common (and we have already limited our scope so that

we are talking about a value less than 10000 at any rate). If the computed rounding

differs from the exact rounding of the exact value it must be that argument x is about

mid-way (in log scale) between two consecutive Fibonacci numbers. The conclusion is

that the integer we obtain after rounding can not be anything else than either J or J+1.

The argument is more subtle than it looks. The conclusion is important to us as it

means we do not have to add extraneous checks involving computation of one or more ad-

ditional Fibonacci numbers.

The formula with macros was obtained via an \xintdeffloatfunc and \xintverbosetrue

after having set \xintDigits* to 8, and then we optimized a bit manually. The advantage

here is that we don't have to set ourself \xintDigits and later restore it.

We can not use (except if only caring about interactive sessions where we control

entirely the whole environment) \XINTinFloatDiv or \XINTinFloatMul if we don't set

\xintDigits (which is user customizable) because they hardcode usage of \XINTdigits.

For the exact same reason 0.9b adds _raw postfix which had been forgotten at 0.9alp⤸
ha. Indeed \PoorManLogBaseTen (without _raw) does an ``in-float'' conversion of its

output, and this uses the current \XINTdigits and adds unnecessary overhead. The fix

at 0.9b of this 0.9alpha oversight brought an efficiency gain of about 5% for this macro

for inputs of 50 digits.

70 \def\ZeckNearIndex#1{\xintiRound{0}{%
71 \xintFloatDiv[8]{\PoorManLogBaseTen_raw{\xintFloatMul[8]{2236068[-6]}{#1}}}%
72 {20898764[-8]}%
73 }%
74 }%

Now we compute the actual maximal index. This macro is only for user interface, because

when obtaining the Zeckendorf representation via the greedy algorithm, we will want for

efficienty to not discard the computed pair of Fibonacci numbers, but proceed using it.

75 \def\ZeckIndex{\expanded\zeckindex}%
76 \def\zeckindex#1{\expandafter\zeckindex_fork\romannumeral`&&@#1\xint:}%
77 \def\zeckindex_fork#1{%
78 \xint_UDzerominusfork
79 #1-\zeck_abort
80 0#1\zeck_abort
81 0-{\zeckindex_a#1}%
82 \krof
83 }%
84 \def\zeckindex_a #1\xint:{%
85 \expandafter\zeckindex_b

15

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

7. Core code

86 \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
87 }%
88 \def\zeckindex_b #1\xint:{%
89 \expandafter\zeckindex_c
90 \romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
91 }%
92 \def\zeckindex_c #1;#2;#3\xint:#4\xint:{%
93 \xintiiifGt{\xintthe#1}{#4}%
94 {{\expandafter}\the\numexpr#3-1\relax}%
95 {{}#3}%
96 }%

7.4. \ZeckIndices, \ZeckZeck
As explained at start of code comments, I decided when packaging the whole thing to make

macros f-expandable via \expanded-trigger, not \romannumeral.

This and other macros start by computing the max index. It then subtracts the Fi-

bonacci number from the input and loops.

97 \def\ZeckIndices{\expanded\zeckindices}%
98 \let\ZeckZeck\ZeckIndices
99 \def\zeckindices#1{\expandafter\zeckindices_fork\romannumeral`&&@#1\xint:}%

100 \def\zeckindices_fork#1{%
101 \xint_UDzerominusfork
102 #1-\zeck_abort
103 0#1\zeck_abort
104 0-{\bgroup\zeckindices_a#1}%
105 \krof
106 }%
107 \def\zeckindices_a #1\xint:{%
108 \expandafter\zeckindices_b
109 \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
110 }%
111 \def\zeckindices_b #1\xint:{%
112 \expandafter\zeckindices_c
113 \romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
114 }%
115 \def\zeckindices_c #1;#2;#3\xint:#4\xint:{%
116 \xintiiifGt{\xintthe#1}{#4}\zeckindices_A\zeckindices_B
117 #1;#2;#3\xint:#4\xint:
118 }%

There is a slight annoyance here which is that we have to use the \xintthe... macros to

have explicit digits so that we can test if the number is zero (if there is some macro

for that in xintexpr it would do as us, look at the first digit, so we don't bother to

check). But alas, the xintexpr manual has documented things such as \xintiiexprPrintOn⤸
e as being customizable, so there is a potentiality here for user modifications causing

a crash, if a custom \xintiiexprPrintOne prints Z or some other symbol in case of the

zero value... We do have at our disposal \xintthebareiieval but it needs one more brace

stripping step. So some \xinttheunbracedbareiieval is needed upstream and when this

is done the code here will get updated.

119 \def\zeckindices_A#1;#2;#3\xint:#4\xint:{%

16

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

7. Core code

120 \the\numexpr#3-1\relax
121 \expandafter\zeckindices_loop
122 \romannumeral`&&@\xinttheiiexpr #4-#2\relax\xint:
123 }%
124 \def\zeckindices_B#1;#2;#3\xint:#4\xint:{%
125 #3%
126 \expandafter\zeckindices_loop
127 \romannumeral`&&@\xinttheiiexpr #4-#1\relax\xint:
128 }%
129 \def\zeckindices_loop#1{%
130 \xint_UDzerofork#1\zeck_done 0{, \zeckindices_a#1}\krof
131 }%

7.5. \ZeckBList
This is the variant which produces the results as a sequence of braced indices. Useful

as support for a zeck() function.

Originally in xint, xinttools, the term ``list'' is used for braced items. In the user

manual of this package I have been using ``list'' more colloquially for comma separated

values. Here I stick with xint conventions but use BList (short for ``list of Braced

items'') and not only ``List'' in the name.

132 \def\ZeckBList{\expanded\zeckblist}%
133 \def\zeckblist#1{\expandafter\zeckblist_fork\romannumeral`&&@#1\xint:}%
134 \def\zeckblist_fork#1{%
135 \xint_UDzerominusfork
136 #1-\zeck_abort
137 0#1\zeck_abort
138 0-{\bgroup\zeckblist_a#1}%
139 \krof
140 }%
141 \def\zeckblist_a #1\xint:{%
142 \expandafter\zeckblist_b
143 \the\numexpr\ZeckNearIndex{#1}\xint:#1\xint:
144 }%
145 \def\zeckblist_b #1\xint:{%
146 \expandafter\zeckblist_c
147 \romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
148 }%
149 \def\zeckblist_c #1;#2;#3\xint:#4\xint:{%
150 \xintiiifGt{\xintthe#1}{#4}\zeckblist_A\zeckblist_B
151 #1;#2;#3\xint:#4\xint:
152 }%
153 \def\zeckblist_A#1;#2;#3\xint:#4\xint:{%
154 {\the\numexpr#3-1\relax}%
155 \expandafter\zeckblist_loop
156 \romannumeral`&&@\xinttheiiexpr #4-#2\relax\xint:
157 }%
158 \def\zeckblist_B#1;#2;#3\xint:#4\xint:{%
159 {#3}%
160 \expandafter\zeckblist_loop
161 \romannumeral`&&@\xinttheiiexpr #4-#1\relax\xint:

17

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

7. Core code

162 }%
163 \def\zeckblist_loop#1{\xint_UDzerofork#1\zeck_done 0{\zeckblist_a#1}\krof}%

7.6. \ZeckIndexedSum, \ZeckExplicitSum
They are expandable, but need x-expansion. The first one assumes it expands in math

mode. We use \sb because the current catcode of _ is letter, and using \sb spares us

some juggling.

164 \def\ZeckIndexedSumSep{+\allowbreak}%
165 \let\ZeckExplicitSumSep\ZeckIndexedSumSep
166 \def\ZeckExplicitOne{\xintthe\Zeck@@FN}%
167 \def\ZeckIndexedSum#1{%
168 \expandafter\zeckindexedsum\expanded\zeckindices{#1},;%
169 }%
170 \def\zeckindexedsum#1{%
171 \if,#1\expandafter\xint_gob_til_sc\fi \zeckindexedsum_a#1%
172 }%
173 \def\zeckindexedsum_a#1,{F\sb{#1}\zeckindexedsum_b}%
174 \def\zeckindexedsum_b #1{%
175 \if;#1\expandafter\xint_gob_til_sc\fi
176 \ZeckIndexedSumSep\zeckindexedsum_a#1%
177 }%
178 \def\ZeckExplicitSum#1{%
179 \expandafter\zeckexplicitsum\expanded\zeckindices{#1},;%
180 }%
181 \def\zeckexplicitsum#1{%
182 \if,#1\expandafter\xint_gob_til_sc\fi \zeckexplicitsum_a#1%
183 }%
184 \def\zeckexplicitsum_a#1,{\ZeckExplicitOne{#1}\zeckexplicitsum_b}%
185 \def\zeckexplicitsum_b #1{%
186 \if;#1\expandafter\xint_gob_til_sc\fi
187 \ZeckExplicitSumSep\zeckexplicitsum_a#1%
188 }%

7.7. \ZeckWord
This is slightly more complicated than \ZeckIndices and \ZeckBList because we have to

keep track of the previous index to know how many zeros to inject.

189 \def\ZeckWord{\expanded\zeckword}%
190 \def\zeckword#1{\expandafter\zeckword_fork\romannumeral`&&@#1\xint:}%
191 \def\zeckword_fork#1{%
192 \xint_UDzerominusfork
193 #1-\zeck_abort
194 0#1\zeck_abort
195 0-{\bgroup\zeckword_a#1}%
196 \krof
197 }%
198 \def\zeckword_a #1\xint:{%
199 \expandafter\zeckword_b\the\numexpr\ZeckNearIndex{#1}\xint:
200 #1\xint:
201 }%

18

7. Core code

202 \def\zeckword_b #1\xint:{%
203 \expandafter\zeckword_c\romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
204 }%
205 \def\zeckword_c #1;#2;#3\xint:#4\xint:{%
206 \xintiiifGt{\xintthe#1}{#4}\zeckword_A\zeckword_B
207 #1;#2;#3\xint:#4\xint:
208 }%
209 \def\zeckword_A#1;#2;#3\xint:#4\xint:{%
210 \expandafter\zeckword_d
211 \romannumeral`&&@\xinttheiiexpr#4-#2\expandafter\relax\expandafter\xint:
212 \the\numexpr#3-1.%
213 }%
214 \def\zeckword_B#1;#2;#3\xint:#4\xint:{%
215 \expandafter\zeckword_d
216 \romannumeral`&&@\xinttheiiexpr#4-#1\relax\xint:
217 #3.%
218 }%
219 \def\zeckword_d #1%
220 {\xint_UDzerofork#1\zeckword_done0{1\zeckword_e}\krof #1}%
221 \def\zeckword_done#1\xint:#2.{1\xintReplicate{#2-2}{0}\iffalse{\fi}}%
222 \def\zeckword_e #1\xint:{%
223 \expandafter\zeckword_f\the\numexpr\ZeckNearIndex{#1}\xint:
224 #1\xint:
225 }%
226 \def\zeckword_f #1\xint:{%
227 \expandafter\zeckword_g\romannumeral`&&@\Zeck@@FPair{#1}#1\xint:
228 }%
229 \def\zeckword_g #1;#2;#3\xint:#4\xint:{%
230 \xintiiifGt{\xintthe#1}{#4}\zeckword_gA\zeckword_gB
231 #1;#2;#3\xint:#4\xint:
232 }%
233 \def\zeckword_gA#1;#2;#3\xint:#4\xint:{%
234 \expandafter\zeckword_h
235 \the\numexpr#3-1\expandafter.%
236 \romannumeral`&&@\xinttheiiexpr #4-#2\relax\xint:
237 }%
238 \def\zeckword_gB#1;#2;#3\xint:#4\xint:{%
239 \expandafter\zeckword_h
240 \the\numexpr#3\expandafter.%
241 \romannumeral`&&@\xinttheiiexpr #4-#1\relax\xint:
242 }%
243 \def\zeckword_h #1.#2\xint:#3.{%
244 \xintReplicate{#3-#1-1}{0}%
245 \zeckword_d #2\xint:#1.%
246 }%

7.8. The Knuth Multiplication: \ZeckKMul
Here a \romannumeral0 trigger is used to match \xintiisum. Although it induces

defining one more macro we obide by the general coding style of xint with a CamelCase

then a lowercase macro, rather than having them merged as only one.

247 \def\ZeckKMul{\romannumeral0\zeckkmul}%

19

http://www.ctan.org/pkg/xint

7. Core code

248 \def\zeckkmul#1#2{\expandafter\zeckkmul_a
249 \expanded{\ZeckIndices{#1}%
250 ,;%
251 \ZeckIndices{#2}%
252 ,,}%
253 }%

The space token at start of #2 after first one is not a problem as it ends up in a \numexpr

anyhow.

254 \def\zeckkmul_a{\expandafter\xintiisum\expanded{{\iffalse}}\fi
255 \zeckkmul_b}%
256 \def\zeckkmul_b#1;#2,{%
257 \if\relax#2\relax\expandafter\zeckkmul_done\fi
258 \zeckkmul_c{#2}#1,\zeckkmul_b#1;%
259 }%
260 \def\zeckkmul_c#1#2,{%
261 \if\relax#2\relax\expandafter\xint_gobble_iii\fi
262 {\xintthe\Zeck@@FN{#1+#2}}\zeckkmul_c{#1}%
263 }%
264 \def\zeckkmul_done#1;{\iffalse{{\fi}}}%

7.9. \ZeckNFromIndices
Spaces before commas are not a problem they disappear in \numexpr.

Each item is f-expanded to check not empty, but perhaps we could skip expanding, as

they end up in \numexpr. Advantage of expansion of each item is that at any location we

can generate multiple indices if desired.

265 \def\ZeckNFromIndices{\romannumeral0\zecknfromindices}%
266 \def\zecknfromindices#1{\expandafter\zecknfromindices_a\romannumeral`&&@#1,;}%
267 \def\zecknfromindices_a{\expandafter\xintiisum\expanded{{\iffalse}}\fi
268 \zecknfromindices_b
269 }%
270 \def\zecknfromindices_b#1{%
271 \if;#1\xint_dothis\zecknfromindices_done\fi
272 \if,#1\xint_dothis\zecknfromindices_skip\fi
273 \xint_orthat\zecknfromindices_c #1%
274 }%
275 \def\zecknfromindices_c #1,{%
276 {\ZeckTheFN{#1}}\expandafter\zecknfromindices_b\romannumeral`&&@%
277 }%
278 \def\zecknfromindices_skip,{\expandafter\zecknfromindices_b\romannumeral`&&@}%
279 \def\zecknfromindices_done;{\iffalse{{\fi}}}%

7.10. \ZeckNFromWord
The \xintreversedigits will f-expand its argument.

280 \def\ZeckNFromWord{\romannumeral0\zecknfromword}%
281 \def\zecknfromword#1{%
282 \expandafter\zecknfromword_a\romannumeral0\xintreversedigits{#1};%
283 }%
284 \def\zecknfromword_a{%
285 \expandafter\xintiisum\expanded{{\iffalse}}\fi\zecknfromword_b 2.%

20

7. Core code

286 }%
287 \def\zecknfromword_b#1.#2{%
288 \if;#2\expandafter\zecknfromword_done\fi
289 \if#21{\xintthe\Zeck@@FN{#1}}\fi
290 \expandafter\zecknfromword_b\the\numexpr#1+1.%
291 }%
292 \def\zecknfromword_done#1.{\iffalse{{\fi}}}%

7.11. Extension of the \xintiieval syntax with fib(), fibseq(), zeck() and
zeckindex() functions

fib() and fibseq() accept negative arguments, but fibseq(a,b) must be with b>a, else

falls into an infinite loop. zeck() and zeckindex() require, but do not check, that

their argument is positive.

We also add support for these functions to \xinteval and \xintfloateval. Arguments

are then truncated (not rounded) to integers.

293 \def\XINT_iiexpr_func_fib #1#2#3%
294 {%
295 \expandafter #1\expandafter #2\expandafter{%
296 \romannumeral`&&@\XINT:NEhook:f:one:from:one
297 {\romannumeral`&&@\ZeckTheFN#3}}%
298 }%
299 \def\ZeckTheFNnum#1{\ZeckTheFN{\xintNum{#1}}}%
300 \def\XINT_expr_func_fib #1#2#3%
301 {%
302 \expandafter #1\expandafter #2\expandafter{%
303 \romannumeral`&&@\XINT:NEhook:f:one:from:one
304 {\romannumeral`&&@\ZeckTheFNnum#3}}%
305 }%
306 \let\XINT_flexpr_func_fib\XINT_expr_func_fib
307 \def\XINT_iiexpr_func_fibseq #1#2#3%
308 {%
309 \expandafter #1\expandafter #2\expandafter{%
310 \romannumeral`&&@\XINT:NEhook:f:one:from:two
311 {\romannumeral`&&@\ZeckTheFSeq#3}}%
312 }%
313 \def\ZeckTheFSeqnum#1#2{\ZeckTheFSeq{\xintNum{#1}}{\xintNum{#2}}}%
314 \def\XINT_expr_func_fibseq #1#2#3%
315 {%
316 \expandafter #1\expandafter #2\expandafter{%
317 \romannumeral`&&@\XINT:NEhook:f:one:from:two
318 {\romannumeral`&&@\ZeckTheFSeqnum#3}}%
319 }%
320 \let\XINT_flexpr_func_fibseq\XINT_expr_func_fibseq
321 \def\XINT_iiexpr_func_zeckindex #1#2#3%
322 {%
323 \expandafter #1\expandafter #2\expandafter{%
324 \romannumeral`&&@\XINT:NEhook:f:one:from:one
325 {\romannumeral`&&@\ZeckIndex#3}}%
326 }%
327 \def\ZeckIndexnum#1{\ZeckIndex{\xintNum{#1}}}%

21

7. Core code

328 \def\XINT_expr_func_zeckindex #1#2#3%
329 {%
330 \expandafter #1\expandafter #2\expandafter{%
331 \romannumeral`&&@\XINT:NEhook:f:one:from:one
332 {\romannumeral`&&@\ZeckIndexnum#3}}%
333 }%
334 \let\XINT_flexpr_func_zeckindex\XINT_expr_func_zeckindex
335 \def\XINT_iiexpr_func_zeck #1#2#3%
336 {%
337 \expandafter #1\expandafter #2\expandafter{%
338 \romannumeral`&&@\XINT:NEhook:f:one:from:one
339 {\romannumeral`&&@\ZeckBList#3}}%
340 }%
341 \def\ZeckBListnum#1{\ZeckBList{\xintNum{#1}}}%
342 \def\XINT_expr_func_zeck #1#2#3%
343 {%
344 \expandafter #1\expandafter #2\expandafter{%
345 \romannumeral`&&@\XINT:NEhook:f:one:from:one
346 {\romannumeral`&&@\ZeckBListnum#3}}%
347 }%
348 \let\XINT_flexpr_func_zeck\XINT_expr_func_zeck

7.12. Extension of the \xintiieval syntax with $ as infix operator for the Knuth
multiplication

Unfortunately, contrarily to bnumexpr, xintexpr (at 1.4o) has no public interface to

define an infix operator, and the macros it defines to that end have acquired another

meaning at end of loading xintexpr.sty, so we have to copy quite a few lines of code.

This is provisory and will be removed when xintexpr.sty will have been udpated. We also

copy/adapt \bnumdefinfix.

We test for existence of \xintdefinfix so as to be able to update upstream and not

have to sync it immediately. But perhaps upstream will choose some other name than

\xintdefinfix...

349 \ifdefined\xintdefinfix
350 \def\zeckdefinfix{\xintdefinfix {iiexpr}}%
351 \else
352 \ifdefined\xint_noxpd\else\let\xint_noxpd\unexpanded\fi % support old xint
353 \def\ZECK_defbin_c #1#2#3#4#5#6#7#8%
354 {%
355 \XINT_global\def #1##1% \XINT_#8_op_<op>
356 {%
357 \expanded{\xint_noxpd{#2{##1}}\expandafter}%
358 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext
359 }%
360 \XINT_global\def #2##1##2##3##4% \XINT_#8_exec_<op>
361 {%
362 \expandafter##2\expandafter##3\expandafter
363 {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#7##1##4}}%
364 }%
365 \XINT_global\def #3##1% \XINT_#8_check-_<op>
366 {%

22

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr

7. Core code

367 \xint_UDsignfork
368 ##1{\expandafter#4\romannumeral`&&@#5}%
369 -{#4##1}%
370 \krof
371 }%
372 \XINT_global\def #4##1##2% \XINT_#8_checkp_<op>
373 {%
374 \ifnum ##1>#6%
375 \expandafter#4%
376 \romannumeral`&&@\csname XINT_#8_op_##2\expandafter\endcsname
377 \else
378 \expandafter ##1\expandafter ##2%
379 \fi
380 }%
381 }%

ATTENTION there is lacking at end here compared to the bnumexpr version an adjustment

for updating minus operator, if some other right precedence than 12, 14, 17 is used.

Doing this would requiring copying still more, so is not done.

382 \def\ZECK_defbin_b #1#2#3#4#5%
383 {%
384 \expandafter\ZECK_defbin_c
385 \csname XINT_#1_op_#2\expandafter\endcsname
386 \csname XINT_#1_exec_#2\expandafter\endcsname
387 \csname XINT_#1_check-_#2\expandafter\endcsname
388 \csname XINT_#1_checkp_#2\expandafter\endcsname
389 \csname XINT_#1_op_-\romannumeral\ifnum#4>12 #4\else12\fi\expandafter\endcsname
390 \csname xint_c_\romannumeral#4\endcsname
391 #5%
392 {#1}% #8 for \ZECK_defbin_c
393 \XINT_global
394 \expandafter
395 \let\csname XINT_expr_precedence_#2\expandafter\endcsname
396 \csname xint_c_\romannumeral#3\endcsname
397 }%

These next two currently lifted from bnumexpr with some adaptations, see previous com-

ment about precedences.

398 \def\zeckdefinfix #1#2#3#4%
399 {%
400 \edef\ZECK_tmpa{#1}%
401 \edef\ZECK_tmpa{\xint_zapspaces_o\ZECK_tmpa}%
402 \edef\ZECK_tmpL{\the\numexpr#3\relax}%
403 \edef\ZECK_tmpL
404 {\ifnum\ZECK_tmpL<4 4\else\ifnum\ZECK_tmpL<23 \ZECK_tmpL\else 22\fi\fi}%
405 \edef\ZECK_tmpR{\the\numexpr#4\relax}%
406 \edef\ZECK_tmpR
407 {\ifnum\ZECK_tmpR<4 4\else\ifnum\ZECK_tmpR<23 \ZECK_tmpR\else 22\fi\fi}%
408 \ZECK_defbin_b {iiexpr}\ZECK_tmpa\ZECK_tmpL\ZECK_tmpR #2%
409 \expandafter\ZECK_dotheitselves\ZECK_tmpa\relax
410 \unless\ifcsname
411 XINT_iiexpr_exec_-\romannumeral\ifnum\ZECK_tmpR>12 \ZECK_tmpR\else 12\fi
412 \endcsname

23

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/bnumexpr

7. Core code

413 \xintMessage{zeckendorf}{Error}{Right precedence not among accepted values.}%
414 \errhelp{Accepted values include 12, 14, and 17.}%
415 \errmessage{Sorry, you can not use \ZECK_tmpR\space as right precedence.}%
416 \fi
417 \ifxintverbose
418 \xintMessage{zeckendorf}{info}{infix operator \ZECK_tmpa\space
419 \ifxintglobaldefs globally \fi
420 does
421 \xint_noxpd{#2}\MessageBreak with precedences \ZECK_tmpL, \ZECK_tmpR;}%
422 \fi
423 }%
424 \def\ZECK_dotheitselves#1#2%
425 {%
426 \if#2\relax\expandafter\xint_gobble_ii
427 \else
428 \XINT_global
429 \expandafter\edef\csname XINT_expr_itself_#1#2\endcsname{#1#2}%
430 \unless\ifcsname XINT_expr_precedence_#1\endcsname
431 \XINT_global
432 \expandafter\edef\csname XINT_expr_precedence_#1\endcsname
433 {\csname XINT_expr_precedence_\ZECK_tmpa\endcsname}%
434 \XINT_global
435 \expandafter\odef\csname XINT_iiexpr_op_#1\endcsname
436 {\csname XINT_iiexpr_op_\ZECK_tmpa\endcsname}%
437 \fi
438 \fi
439 \ZECK_dotheitselves{#1#2}%
440 }%
441 \fi

There is no ``undefine operator'' in bnumexpr currently. Experimental, I don't want to

spend too much time. I sense there is a potential problem with multi-character opera-

tors related to ``undoing the itselves'', because of the mechanism which allows to use

for example ;; as short-cut for ;;; if ;; was not pre-defined when ;;; got defined. To

undefine ;;, I would need to check if it really has been aliased to ;;;, and I don't do

the effort here.

442 \ifdefined\xintdefinfix
443 \else
444 \ifdefined\xint_noxpd\else\let\xint_noxpd\unexpanded\fi % support old xint
445 \def\ZECK_undefbin_b #1#2%
446 {%
447 \XINT_global\expandafter\let
448 \csname XINT_#1_op_#2\endcsname\xint_undefined
449 \XINT_global\expandafter\let
450 \csname XINT_#1_exec_#2\endcsname\xint_undefined
451 \XINT_global\expandafter\let
452 \csname XINT_#1_check-_#2\endcsname\xint_undefined
453 \XINT_global\expandafter\let
454 \csname XINT_#1_checkp_#2\endcsname\xint_undefined
455 \XINT_global\expandafter\let
456 \csname XINT_expr_precedence_#2\endcsname\xint_undefined
457 \XINT_global\expandafter\let

24

http://www.ctan.org/pkg/bnumexpr

8. Interactive code

458 \csname XINT_expr_itself_#2\endcsname\xint_undefined
459 }%
460 \def\zeckundefinfix #1%
461 {%
462 \edef\ZECK_tmpa{#1}%
463 \edef\ZECK_tmpa{\xint_zapspaces_o\ZECK_tmpa}%
464 \ZECK_undefbin_b {iiexpr}\ZECK_tmpa
465 %% \ifxintverbose
466 \xintMessage{zeckendorf}{Warning}{infix operator \ZECK_tmpa\space
467 has been DELETED!}%
468 %% \fi
469 }%
470 \fi

We do not define the extra \chardef's as does bnumexpr to allow more user choices of

precedences, not only because nobody will ever use the feature, but also because it

needs extra configuration for minus unary operator. (as mentioned above)

Attention, this is like \bnumdefinfix and thus does not have same order of arguments

as the \ZECK_defbin_b above.

471 \zeckdefinfix{$}{\ZeckKMul}{14}{14}% $ (<-only to tame Emacs/AUCTeX highlighting)
472 \def\ZeckSetAsKnuthOperator#1{\zeckdefinfix{#1}{\ZeckKMul}{14}{14}}%
473 \def\ZeckDeleteOperator#1{\zeckundefinfix{#1}}%

ATTENTION! we leave the modified catcodes in place! (the question mark has regained

its catcode other though).

8. Interactive code
Extracts to zeckendorf.tex.

1 \input zeckendorfcore.tex
2 \xintexprSafeCatcodes

First release used some trick, but the nesting of conditionals in the main loop has

become more involved, so let's do something more straightforward with a TEX boolean.

3 \let\ZeckShouldISayOrShouldIGo\iftrue
4 \def\ZeckCmdQ{\let\ZeckShouldISayOrShouldIGo\iffalse}
5 \let\ZeckCmdX\ZeckCmdQ
6 \let\ZeckCmdx\ZeckCmdQ
7 \let\ZeckCmdq\ZeckCmdQ
8
9 \newif\ifzeckindices

10 \def\ZeckCmdL{\zeckindicestrue
11 \def\ZeckFromN{\ZeckIndices}\def\ZeckToN{\ZeckNFromIndices}}
12 \let\ZeckCmdl\ZeckCmdL
13
14 \def\ZeckCmdB{\zeckindicesfalse
15 \def\ZeckFromN{\ZeckWord}\def\ZeckToN{\ZeckNFromWord}}
16 \let\ZeckCmdW\ZeckCmdB
17 \let\ZeckCmdb\ZeckCmdB
18 \let\ZeckCmdw\ZeckCmdB
19
20 \newif\ifzeckfromN

25

http://www.ctan.org/pkg/bnumexpr

8. Interactive code

21 \zeckfromNtrue
22 \def\ZeckConvert{\csname Zeck\ifzeckfromN From\else To\fi N\endcsname}
23 \def\ZeckCmdT{\ifzeckfromN\zeckfromNfalse\else\zeckfromNtrue\fi}
24 \let\ZeckCmdt\ZeckCmdT
25
26 \newif\ifzeckmeasuretimes
27 \expandafter\def\csname ZeckCmd@\endcsname{%
28 \ifdefined\xinttheseconds
29 \ifzeckmeasuretimes\zeckmeasuretimesfalse\else\zeckmeasuretimestrue\fi
30 \else
31 \immediate\write128{Sorry, this requires xintexpr 1.4n or later.}%
32 \fi
33 }
34
35 \newif\ifzeckevalonly
36 \def\ZeckCmdE{\ifzeckevalonly\zeckevalonlyfalse\else\zeckevalonlytrue\fi}
37 \let\ZeckCmde\ZeckCmdE
38
39 \ZeckCmdL
40
41 \def\ZeckInviteA{Commands are Q(uit), L(ist), W(ord), T(oggle), E(val-only) or @.}
42
43 \newlinechar10
44 \immediate\write128{}
45 \immediate\write128{Welcome to Zeckendorf 0.9b (2025/10/07, JFB).}
46
47 \immediate\write128{Command summary (lowercase also):^^J
48 Q to quit. Also X.^^J
49 L for Zeckendorf representations as lists of indices.^^J
50 W for Zeckendorf representations as binary words. Also B.^^J
51 T to toggle the direction of conversions.^^J
52 E to toggle to and from \string\xintiieval-only mode.^^J
53 @ to toggle measurement of execution times.}
54 \immediate\write128{}
55 \immediate\write128{%
56 The input, except for "Word -> Integer", is parsed in \string\xintiieval.^^J%
57 So for example 2^100, 100!, or binomial(100,50) are legitimate.^^J%
58 \space\space The fib() function computes Fibonacci numbers.^^J%
59 \space\space The character $ serves as symbol for Knuth multiplication.^^J%$
60 List input can use negative integers, and order does not matter.^^J%
61 Binary word can be arbitrary, except empty.^^J}
62 \immediate\write128{**** empty input is not supported! no linebreaks in input! ****}
63
64 \def\zeckpar{\par}
65 \long\def\xintbye#1\xintbye{}
66 \long\def\zeckgobbleii#1#2{}
67 \long\def\zeckfirstoftwo#1#2{#1}
68 \def\zeckonlyonehelper #1#2#3\zeckonlyonehelper{\xintbye#2\zeckgobbleii\xintbye0}
69
70 \xintloop
71 \immediate\write128{\ZeckInviteA}
72 \message{\ifzeckevalonly (eval only mode, hit E to exit it)\else

26

9. LATEX code

73 \ifzeckfromN Integer -> \ifzeckindices indices\else binary word\fi
74 \else
75 \ifzeckindices Indices \else Binary word \fi
76 -> integer\fi\fi
77 : }
78 \read-1to\zeckbuf
79 \ifx\zeckbuf\zeckpar
80 \immediate\write128{**** empty input is not supported, please try again.}
81 \else
82 \edef\zeckbuf{\zeckbuf}

Space token at end of \zeckbuf is annoying. We could have used \xintLength which does

not count space tokens.

83 \if 1\expandafter\zeckonlyonehelper\zeckbuf\xintbye\zeckonlyonehelper1%
84 \ifcsname ZeckCmd\expandafter\zeckfirstoftwo\zeckbuf\relax\endcsname
85 \csname ZeckCmd\expandafter\zeckfirstoftwo\zeckbuf\relax\endcsname
86 \else
87 \immediate\write128{%
88 **** Unrecognized command letter
89 \expandafter\zeckfirstoftwo\zeckbuf\relax. Try again.^^J}
90 \fi
91 \else
92 \ifzeckfromN\edef\ZeckIn{\xintiieval{\zeckbuf}}\else
93 \ifzeckindices\edef\ZeckIn{\xintiieval{\zeckbuf}}\else
94 \def\ZeckIn{\zeckbuf}%
95 \fi
96 \fi

Using the conditional so that this can also be used by default with older xint.

97 \ifzeckmeasuretimes\xintresettimer\fi
98 \immediate\write128{\ifzeckevalonly\ZeckIn\else\ZeckConvert{\ZeckIn}\fi}%
99 \immediate\write128{\ifzeckmeasuretimes

100 \ifzeckevalonly Evaluation \else Conversion \fi
101 took \xinttheseconds s^^J\fi}
102 \fi
103 \fi
104 \ZeckShouldISayOrShouldIGo
105 \repeat
106
107 \immediate\write128{Bye. Results are also in log file (hard-wrapped too, alas).}
108 \bye

9. LATEX code
Extracts to zeckendorf.sty.

1 \NeedsTeXFormat{LaTeX2e}
2 \ProvidesPackage{zeckendorf}
3 [2025/10/07 v0.9b Zeckendorf representations of big integers (JFB)]%
4 \RequirePackage{xintexpr}
5 \RequirePackage{xintbinhex}% superfluous if with xint 1.4n or later
6 \input zeckendorfcore.tex
7 \ZECKrestorecatcodesendinput%

27

	Title page
	User manual
	Mathematical background
	Use on the command line
	Use as a LaTeX package
	Use with Plain ε-TeX
	Changes
	License

	Commented source code
	Core code
	Loading xintexpr and setting catcodes
	Support for computing Fibonacci numbers: \ZeckTheFN, \ZeckTheFSeq
	\ZeckNearIndex, \ZeckIndex
	\ZeckIndices, \ZeckZeck
	\ZeckBList
	\ZeckIndexedSum, \ZeckExplicitSum
	\ZeckWord
	The Knuth Multiplication: \ZeckKMul
	\ZeckNFromIndices
	\ZeckNFromWord
	Extension of the \xintiieval syntax with fib(), fibseq(), zeck() and zeckindex() functions
	Extension of the \xintiieval syntax with $ as infix operator for the Knuth multiplication

	Interactive code
	LaTeX code

