
tabularcalc
v0.2

User’s manual

Christian Tellechea

unbonpetit@gmail.com

April 21st 2009

Abstract

Given a list of numbers and one (or more) formulas, this package allows with an easy
syntax to build a table of values, i.e a tables in which the first row contains the list
of numbers, and the other rows contain the calculated values of the formulas for each
number of the list:

x −4 −2 0 2.25 7

f(x) = 2x− 3 −11 −7 −3 1.5 11

x2 16 4 0 5.062 5 49

h(x) =
√
x2 + 1 4.123 106 2.236 068 1 2.462 214 7.071 068

The table can be built either horizontally or vertically, and it is fully customizable
(height of rows, columns and lines types). Moreover, the content of any cell can be
easily hidden.

Other local effects are possible since a command allows to execute any code in any
particular cell.

mailto:unbonpetit@gmail.com

Contents

1 Introduction 1
1.1 Presentation . 1
1.2 The fp package . 2
1.3 What is new? . 2
1.4 Vocabulary . 2

2 Basic features 3
2.1 Horizontal tables . 3
2.2 Vertical tables . 4
2.3 How to hide numbers . 4

2.3.1 Hide a value . 4
2.3.2 Hide a result . 5

2.4 Height of rows . 5
2.5 Horizontal lines . 5
2.6 Customizing columns . 6

2.6.1 Vertical lines . 6
2.6.2 Width of columns . 7

3 How to compute the values? 7

4 Advanced customization 8
4.1 Put a code in a cell . 8
4.2 Customizing the number display . 10

4.2.1 Macros \printvalue and \printresult . 10
4.2.2 How to control the rounding of numbers . 10
4.2.3 For the fun . 11

5 Export a table in a file 12

6 Use infix or postfix notation 12

Attention: this manual is the laboured1 translation of the french manual.

Many thanks to Derek O’Connor for the interest he brought to this package and the tests he made
on beta versions. His pertinent suggestions of new features have been very useful. Without his advice,
tabularcalc would not be what it is.

My thanks also to Le Huu Dien Khue who offered the translation of this manual into Vietnamese.

1 Introduction

1.1 Presentation

This package provides commands which make easy possible to build tables of calculated results coming
from formulas for a given list of values. Tables are displayed using the standard tabular environment.
tabularcalc needs LATEX2ε and requires fp, xstring and numprint packages.

This package is not intended to compete with the excellent pgfplotstable package of Christian
Feuersänger which has much more extended customization features, but in compensation, has a
difficult to learn syntax. tabularcalc is meant to be more modest and gives priority to customization
and easy syntax.

To display decimal numbers, in my view, nothing is better than the numprint package. The engine
used to display decimal numbers can be changed or customized, see page 10.

1Indeed, I do not speak english, and I did my best to achieve this translation. Please, be indulgent, and try to

take my place and imagine what it would be for you if you had to translate a manual into french, with some old poor

school knowledge!

1

http://www.ctan.org/tex-archive/macros/latex/contrib/fp/
http://www.ctan.org/tex-archive/macros/latex/contrib/xstring/
http://www.ctan.org/tex-archive/macros/latex/contrib/numprint/
http://www.ctan.org/tex-archive/graphics/pgf/contrib/pgfplots/
http://www.ctan.org/tex-archive/macros/latex/contrib/numprint/

1.2 The fp package

For calculation, the computation of an expression such as 2*x*x-5*x+7 when x = 2.7 is, with TEX,
a very complex thing that tabularcalc does not make. It leaves this task to a math engine provided by
the fp package. It provides all usual arithmetic, trigonometric and scientific operations. Moreover,
infix and postfix notation are available: see the README file for the list of functions available for each
notation.

I fixed 2 issues in the macro \FPpow of the fp package2. This macro is in charge of power calculation
such as ab.

• first of all a spurious space appears when a power is computed. This space is fixed by tabularcalc

• but there is another annoying issue: when fp computes ab it uses this formula ab = eb ln a. There
is an issue when b is an integer and a is negative. For example: (−3)2 = e2 ln(−3). The logarithm
of a negative number is undefined and fp is unable to compute this simple calculation. This
bug is fixed and fp now computes this kind of calculation properly.

To enable tabularcalc fix these issues, the option "fixFPpow" can be declared when calling the package:

1 \usepackage [fixFPpow]{ tabularcalc }

1.3 What is new?

Unfortunaltely, there are some incompatibilities with other packages because the name of macros of
tabularcalc was already used. I decided with a heavy heart to rename almost all the public macros,
risking a probable incompatibility with the previous version. I apologize for this inconvenience. I
rename them with "tc" at their begining:

Old name New name
\noshowmark \tcnoshowmark

\startline \tcatbeginrow

\resetcellcode \tcresetcellcode

\listsep \tclistsep

\printvalue \tcprintvalue

\printresult \tcprintresult

\sethrule \tcsethrule

\resethrule \tcresethrule

\setcoltype \tcsetcoltype

\resetcoltype \tcresetcoltype

Here is the other new features for the users of the previous version:

• calculation is made with fp since pgfmath has a poor precision;

• values can be computed;

• the code of a table can be exported in a file.

1.4 Vocabulary

To define vocabulary for later use, in the simple tables below, red numbers are the "values", blue num-
bers are the "results" and brown texts are the "labels". The cell on the up-left corner is the "cell(0,0)":

2I did not warn the author of fp and I did not ask his permission beacuse he does not maintain his package for a

long time now.

2

http://www.ctan.org/get/macros/latex/contrib/fp/README

Horizontal table

cellule (0,0) −5 −1 0 3 10

x −5 −1 0 3 10

2x −10 −2 0 6 20

3x −15 −3 0 9 30

Vertical table

cellule (0,0) x 2x 3x

−5 −5 −10 −15

−1 −1 −2 −3

0 0 0 0

3 3 6 9

10 10 20 30

2 Basic features

2.1 Horizontal tables

The macro \htablecalc builds horizontal table whose first row contains the "values" and the other
rows the "results". The syntax is:

\htablecalc[〈n〉]{〈cell (0,0)〉}{〈variable=list of values〉}
{〈label 1 〉}{〈formula 1 〉}
{〈label 2 〉}{〈formula 2 〉}
. . .
{〈label n〉}{〈formula n〉}

where :

• 〈n〉 is the number of formulas (1 by default);

• 〈cell (0,0)〉 is the content of the cell (0,0);

• 〈variable〉 is the dummy variable in 〈formula i〉 used to compute the results;

• 〈list of values〉 is the list of values, separated with a comma. Two consecutive commas make an
empty column;

• 〈label i〉 is the ith label;

• 〈formula i〉 is the ith formula, used to calculate the reults of the ith row.

In the list of values, a comma separates values by default. This comma is the expansion of \tclistsep,
and can be changed to "|" for example with \def\tclistsep{|}

For a first example, here is a try to obtain the table of the first page:

1 \htablecalc [3]{$ x$}{ x= -4 , -2 ,0 ,2.25 ,7}

2 {$f(x)=2x -3$}{2* x -3}

3 {x^2}{ x*x}

4 {$h(x)=\ sqrt{x ^2+1}$}{ round (root (2, x*x+1) ,6)}

x −4 −2 0 2.25 7

f(x) = 2x− 3 −11 −7 −3 1.5 11

x2 16 4 0 5.062 5 49

h(x) =
√
x2 + 1 4.123 106 2.236 068 1 2.462 214 7.071 068

This table is not strictly the same than the table of the first page: columns containing results do not
have the same width and the line at the bottom of the first row is different. We will see later how to
customize this.

3

2.2 Vertical tables

The macro \vtablecalc builds vertical table whose first column contains the "values" and the other
rows the "results". The syntax is:

\vtablecalc[〈n〉]{〈cell (0,0)〉}{〈variable=list of values〉}
{〈label 1 〉}{〈formula 1 〉}
{〈label 2 〉}{〈formula 2 〉}
. . .
{〈label n〉}{〈formula n〉}

where :

• 〈n〉 is the number of formulas (1 by default);

• 〈cell (0,0)〉 is the content of the cell (0,0);

• 〈variable〉 is the dummy variable in 〈formula i〉 used to compute the results;

• 〈list of values〉 is the list of values, separated with a comma. Two consecutive commas make an
empty column;

• 〈label i〉 is the ith label;

• 〈formula i〉 is the ith formula, used to calculate the reults of the ith row.

Here is the previous table, but vertically built:

1 \vtablecalc [3]{$ x$}{ y= -4 , -2 ,0 ,2.25 ,7}

2 {$f(x)=2x -3$}{2* y -3}

3 {x^2}{ y*y}

4 {$h(x)=\ sqrt{x ^2+1}$}{ round (root (2, y*y+1) ,6)}

x f(x) = 2x− 3 x2 h(x) =
√
x2 + 1

−4 −11 16 4.123 106

−2 −7 4 2.236 068

0 −3 0 1

2.25 1.5 5.062 5 2.462 214

7 11 49 7.071 068

2.3 How to hide numbers

The content of any cell can be hidden, as well as in a horizontal or vertical table.

2.3.1 Hide a value

In the list of values, a "@" before a value hides it. In the following example, the second and fifth values
are hidden:

1 \htablecalc [3]{$ x$}{ x=-4,@ -2 ,0 ,2.25 , @7}

2 {$f(x)=2x -3$}{2* x -3}

3 {x^2}{ x*x}

4 {$h(x)=\ sqrt{x ^2+1}$}{ round (root (2, x*x+1) ,6)}

x −4 0 2.25

f(x) = 2x− 3 −11 −7 −3 1.5 11

x2 16 4 0 5.062 5 49

h(x) =
√
x2 + 1 4.123 106 2.236 068 1 2.462 214 7.071 068

Behind the scene, the "@" token is the expansion of \tcnoshowmark. To change this token to "=", this
simple code does the job: \def\tcnoshowmark{=}

4

2.3.2 Hide a result

If a value is followed by [a1][a2] . . . [an] where the numbers ai are increasing, the results number
a1, a2, . . . , an will be hidden. If a number aj = 0, all the others ak where k > j will be ignored and
the results following the previous hidden result will be hidden.

In the example, with the list of values "-4[2],-2,0[1][3],2.25[0],7[2][0]", we are going to:

• hide the second result of the first value with "-4[2]"

• let all the results visible for the second value with "-2"

• hide the results number 1 and 3 of the third value with "0[1][3]"

• hide all the results of the fourth value with "2.25[0]"

• for the fifth value, hide all the results from the second with "7[2][0]"

1 \htablecalc [3]{$ x$}{ x= -4[2] , -2 ,0[1][3] ,2.25[0] ,7[2][0]}

2 {$f(x)=2x -3$}{2* x -3}

3 {x^2}{ x*x}

4 {$h(x)=\ sqrt{x ^2+1}$}{ round (root (2, x*x+1) ,6)}

x −4 −2 0 2.25 7

f(x) = 2x− 3 −11 −7 11

x2 4 0

h(x) =
√
x2 + 1 4.123 106 2.236 068

This feature can be mixed with "@" to hide a value and results.

2.4 Height of rows

At the begining of a row, when it is displayed, the macro \tcatbeginrow runs.
By default, this command is defined by: \def\tcatbeginrow{\rule[-1.2ex]{0pt}{4ex}}. Its ex-
pansion is a "strut" which adjusts the height of the row. Here is this strut, made visible before the

lettre "a": a

Any other action, or another strut can be defined:

1 \def \ tcatbeginrow{%

2 {\ bfseries \number \ tclin)\ }%

3 }

4 \htablecalc [3]{$ x$}{ x= -4 , -2 ,0 ,2.25 ,7}

5 {$f(x)=2x -3$}{2* x -3}

6 {x^2}{ x*x}

7 {$h(x)=\ sqrt{x ^2+1}$}{ round (root (2, x*x+1) ,6)}

0) x −4 −2 0 2.25 7
1) f(x) = 2x− 3 −11 −7 −3 1.5 11

2) x2 16 4 0 5.062 5 49

3) h(x) =
√
x2 + 1 4.123 106 2.236 068 1 2.462 214 7.071 068

Here, no strut is defined (the lines recover their natural height), and at line 2 of the code, the number
of the row (contained in the counter \tclin) is displayed with bold chars.

2.5 Horizontal lines

tabularcalc allows to define 3 types of horizontal lines. The macro \tcsethrule has 3 arguments:

• the first that we call "line 0" is displayed on the top and bottom of the table;

• the second, "line 1", is displayed at the bottom of the first row;

5

• the third, "other lines", is displayed at the bottom of the other rows, excepted the last one which
is the bottom of the table.

Here is the syntax:
\tcsethrule{〈line 0 〉}{〈line 1 〉}{〈other lines〉}
By default, the three arguments contain \hline.

This is an example in which the "line 1" is a double line, and the "other lines" are not drawn:

1 \tcsethrule {\ hline }{\ hline \hline }{}

2 \htablecalc [3]{$ x$}{ x=-2,-1,0,1,2,3}

3 {$2 x$}{2* x}

4 {$3 x$}{3* x}

5 {$4 x$}{4* x}

x −2 −1 0 1 2 3

2x −4 −2 0 2 4 6

3x −6 −3 0 3 6 9

4x −8 −4 0 4 8 12

The command \tcresethrule resets the defined lines and restores the default lines.

2.6 Customizing columns

2.6.1 Vertical lines

2 types of column can be defined: the type of the left one and the type of others columns. The
command \tcsetcoltype has an optionnal argument and 2 mandatory arguments:

• the optional argument, empty by default, defines the vertical lines at the right of the table;

• the "type 1" of the first column, set to "|c|" by default;

• the "type 2" of the other colunms, set to "c|" by default.

The syntax of the command is:
\tcsetcoltype[〈right lines〉]{〈type 1 〉}{〈type 2 〉}
In this example, a double line is displayed at the right of the table ([||]), and on the edges of the
first column (||c||). The other columns do not have vertical lines (c):

1 \ tcsetcoltype [||]{|| c||}{ c}

2 \htablecalc [3]{$ x$}{ x=-2,-1,0,1,2,3}

3 {$2 x$}{2* x}

4 {$3 x$}{3* x}

5 {$4 x$}{4* x}

x −2 −1 0 1 2 3

2x −4 −2 0 2 4 6

3x −6 −3 0 3 6 9

4x −8 −4 0 4 8 12

\tcresetcoltype restores the default vertical lines.

6

2.6.2 Width of columns

Instead of the usual column type "c" used until now, other types of column can be specified: for
example, the "m" type of the array package allows to set the width of columns this way: m{1.5cm}.

In this example, the first column is right aligned, and the other columns are centered and 1.5 cm
width:

1 \usepackage {array }

2 \ tcsetcoltype{|r|}{ >{\ centering \ arraybackslash}m{1.5 cm }|}

3 \htablecalc [3]{$ x$}{ x= -4 , -2 ,0 ,2.25 ,7}

4 {$f(x)=2x -3$}{2* x -3}

5 {x^2}{ x*x}

6 {$h(x)=\ sqrt{x ^2+1}$}{ round (root (2, x*x+1) ,6)}

x −4 −2 0 2.25 7

f(x) = 2x− 3 −11 −7 −3 1.5 11

x2 16 4 0 5.062 5 49

h(x) =
√
x2 + 1 4.123 106 2.236 068 1 2.462 214 7.071 068

3 How to compute the values?

When values can be calculated with a math formula, it may be more simple to write the formula than
all the values. This code:

1 \htablecalc [2]{$ x$}{ x= -3 , -1 ,1 ,3 ,5 ,7 ,9 ,11 ,13}

2 {$2 x$}{2* x}

3 {x^2}{ x*x}

can be replaced by this shorter oneo:

1 \htablecalc [2]{$ x$}{ x=a;a = -3:13[2]}

2 {$2 x$}{2* x}

3 {x^2}{ x*x}

The presence of a ";" changes the analysis of the argument: on the right of ";" we say that the dummy
variable "a" varies between −3 and 13 with a step of 2. Therefore is an odd integer. On the left of
";" we say that the dummy variable – here x – involved in the formulas used to compute the results
is equal to a and consequently the values are odd integers between −3 and 13.
These values could have been generated with this argument {x=2*a+1:a=-2:6} (the step is 1 by
default) or this other one {x=2*a-3;a=0:8}, or another one because there are several way to generate
a set of values.

When using an argument with ";", the feature enabling to hide cells (see page 4) is not available.
Moreover, the user should be aware of the number of generated values to avoid huge tables.

With a ";", the syntax of the argument is:

〈variable 1 〉=〈formula〉;〈variable 2 〉=〈min〉:〈max〉[〈step〉]
where:

• 〈variable 1 〉 is the dummy variable involved in the formulas used to compute the results;

• 〈variable 2 〉 is the dummy variable involved in the formulas used to compute the values; it must
be different from 〈variable 1 〉;

• 〈formula〉 is the formula used to compute the values. The variable in this formula is 〈variable
2 〉;

• 〈min〉:〈max〉 is the interval in which 〈variable 2 〉 varies;

7

http://www.ctan.org/tex-archive/graphics/pgf/base/latex/pgf/basiclayer/

• 〈step〉 is the step added to 〈variable 2 〉 until it reaches 〈max〉 or more. It is optional and its
defaul value is 1. It must be different from 0.

There are many different ways to generate the same set of values.
For example, the values {0,1,2,3,4,5,6,7,8,9,10} can be generated with:

• {z=x;x=0:10} and “z” will be the dummy variable in formulas;

• {n=2*a;a=0:5[0.5]} and “n” will be the dummy variable in formulas;

• {x=y/10;y=0:100[10]} and “x” will be the dummy variable in formulas;

The value of 〈step〉 and 〈min〉:〈max〉 must be coherent: 0:10[-1] will provoke an error message from
tabularcalc!

This is an example using the trigonometric functions of fp:

1 \htablecalc [6]{$ x$\ [deg]}{ x=a;a=15:75[15]}

2 {$\ sin x$}{ round (sin (x*pi /180) ,6)}

3 {$\ cos x$}{ round (cos (x*pi /180) ,6)}

4 {$\ tan x$}{ round (tan (x*pi /180) ,6)}

5 {$\ sin ^2x$}{ round (sin (x*pi /180) ^2 ,6) }

6 {$\ cos ^2x$}{ round (cos (x*pi /180) ^2 ,6) }

7 {$\ tan ^2x$}{ round (tan (x*pi /180) ^2 ,6) }

x [deg] 15 30 45 60 75

sinx 0.258 819 0.5 0.707 107 0.866 025 0.965 926

cosx 0.965 926 0.866 025 0.707 107 0.5 0.258 819

tanx 0.267 949 0.577 35 1 1.732 051 3.732 051

sin2 x 0.066 987 0.25 0.5 0.75 0.933 013

cos2 x 0.933 013 0.75 0.5 0.25 0.066 987

tan2 x 0.071 797 0.333 333 1 3 13.928 203

And here is another table displaying powers of 10, their decimal logarithm, their square root and their
inverse:

1 \htablecalc [3]{ Power of 10}{ x=round (10^n ,4) ;n= -3:3}

2 { Decimal logarithm }{ ln(x)/ln (10)}

3 { Square root }{ round (root(2, x) ,3)}

4 { Inverse }{1/x}

Power of 10 0.001 0.01 0.1 1 10 100 1,000

Decimal logarithm −3 −2 −1 0 1 2 3

Square root 0.032 0.1 0.316 1 3.162 10 31.623

Inverse 1,000 100 10 1 0.1 0.01 0.001

4 Advanced customization

4.1 Put a code in a cell

The command \defcellcode allows to execute any code in a unique cell, or in every cells of a row or
in every cells of a column. Cells have the following coordinates:

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

8

Here is the syntax:
\defcellcode{〈number 1 〉}{〈number 2 〉}{〈code〉}
where :

• 〈number 1 〉 is the first coordinate (row number);

• 〈nombre 2 〉 is the second coordinate (column number);

• 〈code〉 is the code executed when the specified cell is displayed;

• if 〈number 1 〉 is empty, all the rows are concerned;

• if 〈nombre 2 〉 is empty, all the columns are concerned;

Behind the scene, the first coordinate – the row number – is the counter \tclin, and the number of
the column is the counter \tccol.

Notice that the code is expanded when the cell is displayed, and at that moment, the counter \tccol

does not contain anymore the column number of the cell: you should not use \tccol in the code
definied with the macro \defcellcode. On the other hand, the counter \tclin does contain the
reliable number of the current line.
If codes are defined with \defcellcode and several of them are runned in the same cell, they will be
executed in the same order of their definition.

In this example, with the package xcolor, the cell (2 , 3) is colored in blue, the row 1 in red and the
column 4 in brown:

1 \usepackage {color }

2 \defcellcode {2}{3}{\ color {blue }}

3 \defcellcode {1}{}{\ color {red }}

4 \defcellcode {}{4}{\ color { brown }}

5 \htablecalc [3]{$ x$}{ x=-2,-1,0,1,2,3}

6 {$2 x$}{2* x}

7 {$3 x$}{3* x}

8 {$4 x$}{4* x}

x −2 −1 0 1 2 3

2x −4 −2 0 2 4 6

3x −6 −3 0 3 6 9

4x −8 −4 0 4 8 12

Notice that the cell (1 , 4) whose content is 2 has been colored in red (line 3 of the code) and then in
brown (line 4 of the code).

Another similar command is provided to execute code in a cell: \edefcellcode. With this command,
the code is expanded a first time with an \edef3 when cell is built: at this time, the counter \tccol

does contain the number of the column. Then, the expansion obtained is runned a second time when
cell is displayed.

In this example, text is blue if the column number is greater than 2:

1 \usepackage {color }

2 \ edefcellcode {}{}{ %

3 \ ifnum \tccol >2 \ noexpand \color {blue }\ fi}

4 \htablecalc [3]{$ x$}{ x=-2,-1,0,1,2,3}

5 {$2 x$}{2* x}

6 {$3 x$}{3* x}

7 {$4 x$}{4* x}

3If a command must not be expanded at this time, a \noexpand must be put before it.

9

x −2 −1 0 1 2 3

2x −4 −2 0 2 4 6

3x −6 −3 0 3 6 9

4x −8 −4 0 4 8 12

4.2 Customizing the number display

4.2.1 Macros \printvalue and \printresult

To display a value, the macro \tcprintvalue is called. It requires one argument: the number to
display which comes from pgfcalc. This argument has a raw format: 12345.6789 for "12,345.678 9".
By default, \tcprintvalue is defined with this code:

\def\tcprintvalue#1{\numprint{#1}}

Notice that the macro \numprint is called to print the number.

To display a result, the macro \tcprintresult is called. It requires two arguments: the first is the
number to display in raw format coming from pgfcalc and the second is the value used to compute
the result.
By default, \tcprintresult is defined with this code:

\def\tcprintresult#1#2{\numprint{#1}}

Notice that the argument #2 (the value) is ignored by \tcprintresult. But it is easy to imagine an
example in which it would not be. In this example, a red "X" is printed if the lenght of the square
(which is argument #2) is negative. If not, the result with the unit is printed. For the pleasure of
customization, any result less than 10 is printed in blue:

1 \ usepackage {color }

2 \def \ tcprintresult #1#2{ %

3 \ ifdim #1pt <10 pt\color {blue }\ fi

4 \ ifdim #2pt <0 pt

5 \ color {red }\ texttt {X}%

6 \ else

7 \ numprint [cm ^2]{#1} %

8 \fi}

9 \ htablecalc {length }{x=0.7 , -10 ,3 , -2 ,5 ,12}

10 {Area of square }{x*x}

length 0.7 −10 3 −2 5 12

Area of square 0.49 cm2 X 9 cm2 X 25 cm2 144 cm2

4.2.2 How to control the rounding of numbers

Results of calculation coming from fp have a good precision, and decimal resultas have often many
digits. Here is, for example the decimal value of

√
10, computed by fp:

3.162 277 660 168 379 312

The first 11 digits are right, the 12th is rounded.

To display results, the round(number,precision) of fp can be used. To avoid writing many times
round(number,precision) in the code, tabularcalc provides \tcprintroundresult. Its mandatory
argument is the precision of the decimal part. The starred macro \tcprintroundresult* fills the
decimal part with "0" if necessary. If the argument is empty, no rounding is done (default behaviour).

1 \ tcprintroundresult {3}

2 \ htablecalc {x}{ x=2 ,3 ,4 ,5}

3 {$\ sqrt{x}$}{ root (2, x)}

x 2 3 4 5
√
x 1.414 1.732 2 2.236

1 \ tcprintroundresult *{3}

2 \htablecalc {x}{ x=2 ,3 ,4 ,5}

3 {$\ sqrt{x }$}{ root(2, x)}

x 2 3 4 5
√
x 1.414 1.732 2.000 2.236

10

To round values, it is not adviced to use the round function of fp since the rounded values will be
used to compute the results, and rounding errors may add up. In this example, the values (square
roots of integers) are the are rounded at 10−2, and the results are the square of values:

1 \htablecalc {squre roots }{x=round (root (2, k) ,2);k=2:4}

2 { square }{x*x}

squre roots 1.41 1.73 2

square 1.988 1 2.992 9 4

It is obvious that rounding errors are taken into account to compute results.
It is better to use \tcprintroundvalue which works like \tcprintroundresult:

1 \ tcprintroundvalue {2}

2 \ htablecalc {squre roots }{x=root (2, k);k=2:4}

3 { square }{x*x}

squre roots 1.41 1.73 2

square 1.999 999 999 999 999 98 2.999 999 999 999 999 935 3.999 999 999 999 999 96

The results – which are not rounded – are much nearer the expected integers.

4.2.3 For the fun

Other uses of this package can be designed, such as the drawing of a chess board whose squares are
0.5 cm long:

• on line 1, the separators of the table are initialzes at 0pt to obtain the length of 0.5 cm;

• the display of values and results is cancelled at line 2;

• horizontal lines of the top and bottom of the table are drawn (line 3), and vertical lines of the
left and right (line 4);

• a strut 0.5 cm height is defined to be displayed at the begining of every row (line 5);

• finally, if the sum of the row number and the column number is odd, the square is filled of gray
(line 7 and 8).

1 \arraycolsep =0 pt\tabcolsep =0 pt

2 \def \ tcprintvalue #1{}\ def \ tcprintresult #1#2{}

3 \tcsethrule {\ hline }{}{}

4 \ tcsetcoltype [|]{| m {0.5 cm }}{ m{0.5 cm }}

5 \def \ tcatbeginrow{\ rule [-0.2 cm]{0 pt }{0.3 cm}}

6 \ edefcellcode {}{}{ %

7 \ ifodd \ numexpr \ tccol +\ tclin \relax

8 \ noexpand \cellcolor { lightgray }\fi

9 }

10 \htablecalc [7]{}{ x=1 ,2 ,3 ,4 ,5 ,6 ,7}

11 {}{ x }{}{x}{}{ x}{}{ x}{}{x }{}{x}{}{ x}

11

5 Export a table in a file

No matter how customizable tabularcalc is, some tables need fine adjustments by the user at the
keyboard. The \tcwritetofile{〈filename〉} has a mandatory argument which is the name of a file
without extension. The next \htablecalc or \vtablecalc after this command will not display the
tables, but a file named 〈filename〉.tex will be written in the current directory, and its content will
be the code of the table.

Here is an example:

1 \ tcwritetofile{mytable }

2 \defcellcode {}{2}{\ color { blue }}

3 \htablecalc [2]{$ x$}{ x=k;k =0:4}

4 {$2 x $}{2* x}

5 {x^2}{ x*x}

6 \ tcresetcellcode

A file “mytable.tex” is created in the current directory and its content is the code of the table:

1 \begin { tabular }{| c |*{5}{ c|}}\ hline

2 \ tcatbeginrow x&\ tcprintvalue {0}&\ color { blue }\ tcprintvalue {1}&\

tcprintvalue {2}&\ tcprintvalue {3}&\ tcprintvalue {4}\\\ hline

3 \ tcatbeginrow $2x$&\ tcprintresult {0}{0}&\ color { blue }\ tcprintresult

{2}{1}&\ tcprintresult {4}{2}&\ tcprintresult {6}{3}&\ tcprintresult

{8}{4}\\ \ hline

4 \ tcatbeginrow $x ^2$&\ tcprintresult {0}{0}&\ color { blue }\ tcprintresult

{1}{1}&\ tcprintresult {4}{2}&\ tcprintresult {9}{3}&\ tcprintresult

{16}{4}\\ \ hline

5 \end { tabular }

The user can modify this code, and then this file can be included in the LATEX code with:

1 \input {mytable .tex }

and here is the result:

x 0 1 2 3 4

2x 0 2 4 6 8

x2 0 1 4 9 16

6 Use infix or postfix notation

Infix or postfix notation can be used since \FPeval accepts both. In this exaple, the same table is
generated with each notation. The result is exactly the same since only notation changes while math
engine is the same:

1 \ tcprintroundvalue {6}

2 \ tcprintroundresult {6}

3 With infix notation \par

4 \htablecalc [3]{$ x=10^k$ o\‘u $k\in [-3;3]$}{ x=10^k;k= -3:3}

5 {$\ log x$}{ ln(x)/ln (10)}

6 {$\ sqrt {x}$}{ root(2, x)}

7 {$\ frac {1}{x}$}{1/ x}

8

9 \medskip

10 With postfix notation \par

11 \htablecalc [3]{$ x=10^k$ o\‘u $k\in [-3;3]$}{ x=k 10 pow ;k= -3:3}

12 {$\ log x$}{ x ln 10 ln div }

13 {$\ sqrt {x}$}{2 x root}

14 {$\ frac {1}{x}$}{1 x div }

With infix notation

12

x = 10k où k ∈ [−3; 3] 0.001 0.01 0.1 1 10 100 1,000

log x −3 −2 −1 0 1 2 3
√
x 0.031 623 0.1 0.316 228 1 3.162 278 10 31.622 777

1
x

1,000 100 10 1 0.1 0.01 0.001

With postfix notation

x = 10k où k ∈ [−3; 3] 0.001 0.01 0.1 1 10 100 1,000

log x −3 −2 −1 0 1 2 3
√
x 0.031 623 0.1 0.316 228 1 3.162 278 10 31.622 777

1
x

1,000 100 10 1 0.1 0.01 0.001

If possible and if the user is used to it, the postfix notation should be prefered beacuse it often saves
computation times. Indeed, to compute cosx(1 − cosx), here is the infix notation:

1 cos (x)*(1- cos (x))

Obviously, cosx is unnecessarily computed twice which slows down the compilation.

With the postfix notation, it is computed once:

1 x cos copy 1 swap sub mul

⋆

⋆ ⋆

That’s all, I hope you will find this package useful!
Please, send me an email if you find a bug or if you have any idea of improvement. . .

Christian Tellechea

13

mailto:unbonpetit@gmail.com

